Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(=x^4+5x^3-2x^2-5x^3-25x^2+10x+2x^2+10x-4=x^2\left(x^2+5x-2\right)-5x\left(x^2+5x-2\right)+2\left(x^2+5x-2\right)=\left(x^2+5x-2\right)\left(x^2-5x+2\right)\)
b/ \(=x^4-7x^2+9=x^4+x^3-3x^2-x^3-x^2+3x-3x^2-3x+9=x^2\left(x^2+x-3\right)-x\left(x^2+x-3\right)-3\left(x^2+x-3\right)=\left(x^2+x-3\right)\left(x^2-x-3\right)\)
c/ \(=4x^2-2x-6x+3=2x\left(2x-1\right)-3\left(2x-1\right)=\left(2x-1\right)\left(2x-3\right)\)
d/ \(=y^4+2xy^3+2x^2y^2-2xy^3-4x^2y^2-2x^3y+2x^2y^2+4x^3y+4x^4=y^2\left(y^2+2xy+2x^2\right)-2xy\left(y^2+2xy+2x^2\right)+2x^2\left(y^2+2xy+2x^2\right)=\left(y^2+2xy+2x^2\right)\left(y^2-2xy+2x^2\right)\)
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
mình làm bài 2 trước nha:
a) y.(a-b)+a.(y-b)=a.y-b.y+a.y-b.y
=(a.y+a.y)-(b.y+b.y)
=2.a.y-2.b.y
=2.y.(a-b)
b)x2.(x+y)-y.(x2-y2)=x3+x2.y-x2y+y3=x3+y3
\(A=x^2-4y^4=\left(x-2y^2\right)\left(x+2y^2\right)\)
\(B=8x^3+1=\left(2x+1\right)\left(4x^2-2x+1\right)\)
\(C=54x^3-16y^3=2\left(27x^3-8y^3\right)=2\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)\)
\(D=x^2-6x+8=\left(x^2-6x+9\right)-1=\left(x-3\right)^2-1=\left(x-3-1\right)\left(x-3+1\right)=\left(x-4\right)\left(x-2\right)\)
\(E=2x^2-5x+2=\left(2x^2-4x\right)-\left(x-2\right)=2x\left(x-2\right)-\left(x-2\right)=\left(x-2\right)\left(2x-1\right)\)
\(G=x^4+2x^2-3=\left(x^4+3x^2\right)-\left(x^2+3\right)=x^2\left(x^2+3\right)-\left(x^2+3\right)=\left(x^2+3\right)\left(x^2-1\right)=\left(x^2+3\right)\left(x-1\right)\left(x+1\right)\)
\(a/\)
\(4x-4y+x^2-2xy+y^2\)
\(=\left(4x-4y\right)+\left(x^2-2xy+y^2\right)\)
\(=4\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(4+x-y\right)\)
\(b/\)
\(x^4-4x^3-8x^2+8x\)
\(=\left(x^4+8x\right)-\left(4x^3+8x^2\right)\)
\(=x\left(x^3+8\right)-4x^2\left(x+2\right)\)
\(=x\left(x+2\right)\left(x^2-2x+4\right)-4x^2\left(x+2\right)\)
\(=x\left(x+2\right)\left(x^2-2x+4-4x\right)\)
\(=x\left(x+2\right)\left(x^2-6x-4\right)\)
\(d/\)
\(x^4-x^2+2x-1\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2+x-1\right)\left(x^2-x+1\right)\)
\(e/\)(Xem lại đề)
\(x^4+x^3+x^2+2x+1\)
\(=\left(x^4+x^3\right)+\left(x^2+2x+1\right)\)
\(=x^3\left(x+1\right)+\left(x+1\right)^2\)
\(=\left(x+1\right)\left(x^3+x+1\right)\)
\(f/\)
\(x^3-4x^2+4x-1\)
\(=x\left(x^2-4x+4\right)-1^2\)
\(=x\left(x-2\right)^2-1\)
\(=[\sqrt{x}\left(x-2\right)]^2-1\)
\(=[\sqrt{x}\left(x-2\right)-1][\sqrt{x}\left(x-2\right)+1]\)
\(c/\)
\(x^3+x^2-4x-4\)
\(=\left(x^3-2x^2\right)+\left(3x^2-6x\right)+\left(2x-4\right)\)
\(=x^2\left(x-2\right)+3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+3x+2\right)\)
\(=\left(x-2\right)[\left(x^2+x\right)+\left(2x+2\right)]\)
\(=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)