\(14+6\sqrt{5}\)

\(12-\sqrt{140}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

14 + 6\(\sqrt{5}\)=9+ 2.3.\(\sqrt{5}\)+5

                      =(3 + \(\sqrt{5}\))2

 12 - \(\sqrt{140}\)= 7- 2\(\sqrt{35}\)+5

                         =(\(\sqrt{7}\)-\(\sqrt{5}\))2

12 tháng 8 2019

\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}=\left(2\sqrt{5}+3\right)-\left(2\sqrt{5}-3\right)=6\)

\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}-\sqrt{3}\right)=-\sqrt{5}\)

\(\sqrt{8-12\sqrt{5}}+\sqrt{48+6\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)+\left(3\sqrt{5}+\sqrt{3}\right)=4\sqrt{5}\)

\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\left(5-2\sqrt{6}\right)+\left(5+2\sqrt{6}\right)=10\)

\(\sqrt{15-6\sqrt{15}}+\sqrt{33-12\sqrt{6}}\) đề này sai ạ

\(\sqrt{16-6\sqrt{7}}+\sqrt{64-24\sqrt{7}}=\left(3-\sqrt{7}\right)+\left(6-2\sqrt{7}\right)=9-3\sqrt{7}\)

\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\left(3-\sqrt{5}\right)+\left(3+\sqrt{5}\right)=6\)

\(\sqrt{1-6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\left(2\sqrt{2}+5\right)+\left(2\sqrt{2}-5\right)=4\sqrt{2}\)

\(\sqrt{46-6\sqrt{5}}+\sqrt{29-12\sqrt{5}}=\left(3\sqrt{5}-1\right)+\left(2\sqrt{5}-3\right)=5\sqrt{5}-4\)

#Học tốt ạ

13 tháng 8 2017

bài 2 nhé, bài 1 không biết làm.

cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))

+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương

- nhắm đến hằng đẳng thức số 1 và số 2.

+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối

* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)

=> ta sẽ phân tích số hạng chứa căn để tìm A và B

+ nhẩm bằng máy tính, tìm 2 số hạng:

thử lần lượt các trường hợp, lấy vd là câu c)

\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)

\(\Rightarrow AB=6\sqrt{5}\)

- đầu tiên xét đơn giản với B là căn 5 => A= 6

\(A^2+B^2=36+5=41\) (41 khác 29 => loại)

- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)

tương ứng A= 2; B = 3 căn 5

\(A^2+B^2=4+45=49\) (loại)

- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)

Tương ứng A= 3 ; B= 2 căn 5

\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)

Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)

+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:

\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)

sau đó bạn làm tương tự như 2 câu mẫu bên dưới

* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối

a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)

3 tháng 7 2018

\(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\\ =\sqrt{\left(3\sqrt{5}\right)^2-2.3\sqrt{5}+1}-\sqrt{\left(2\sqrt{5}\right)^2-2.3.2\sqrt{5}+3^2}\\ =3\sqrt{5}-1-2\sqrt{5}+3=\sqrt{5}+2\)

Mấy câu sau tương tự.

3 tháng 7 2018

Bạn ơi cho mình hỏi câu này làmntn ạ

\(\sqrt{27-12\sqrt{ }5}\)

\(\sqrt{4+\sqrt{ }15}\)

1 tháng 8 2017

tớ ko chép lại đề, kí hiệu nhé

(1) \(=\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{\left|\sqrt{6}+\sqrt{5}\right|^2}=\left(\sqrt{6}-\sqrt{5}\right)^2-\left(\sqrt{6}+\sqrt{5}\right)=1-2\sqrt{30}-\sqrt{6}-\sqrt{5}\)

ai ra đề mà để đáp án dài thế này mất thẩm mĩ quá!!!

(2) \(=\sqrt{\left|\sqrt{5}+\sqrt{3}\right|^2}-\sqrt{\left|\sqrt{5}-\sqrt{3}\right|^2}=\left(\sqrt{5}+\sqrt{3}\right)-\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}\)

(3) \(=\sqrt{\left|\sqrt{7}+2\right|^2}-\sqrt{\left|3-\sqrt{5}\right|^2}=\sqrt{7}+2-3+\sqrt{5}=\sqrt{7}+\sqrt{5}-1\)

lại thêm 1 phép tính không đẹp....

(4) \(=\sqrt{\left|3\sqrt{2}-2\right|^2}-\sqrt{\left|3\sqrt{2}+1\right|^2}=3\sqrt{2}-2-3\sqrt{2}-1=-3\)

(5) \(=\sqrt{\left|2\sqrt{3}-1\right|^2}+\sqrt{\left|2\sqrt{3}-3\right|^2}=2\sqrt{3}-1+2\sqrt{3}-3=4\sqrt{3}-4\)

kiểm tra lại kết quả nhé ^^! Cảm ơn!

a) Ta có: \(\sqrt{14-2\sqrt{33}}\)

\(=\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{3}+3}\)

\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}\)

\(=\left|\sqrt{11}-\sqrt{3}\right|\)

\(=\sqrt{11}-\sqrt{3}\)(Vì \(\sqrt{11}>\sqrt{3}\))

b) Ta có: \(\sqrt{12-2\sqrt{35}}\)

\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{5}+5}\)

\(=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}\)

\(=\left|\sqrt{7}-\sqrt{5}\right|\)

\(=\sqrt{7}-\sqrt{5}\)(Vì \(\sqrt{7}>\sqrt{5}\))

c) Ta có: \(\sqrt{16-2\sqrt{55}}\)

\(=\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{5}+5}\)

\(=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)

\(=\left|\sqrt{11}-\sqrt{5}\right|\)

\(=\sqrt{11}-\sqrt{5}\)(Vì \(\sqrt{11}>\sqrt{5}\))

d) Ta có: \(\sqrt{14-6\sqrt{5}}\)

\(=\sqrt{9-2\cdot3\cdot\sqrt{5}+5}\)

\(=\sqrt{\left(3-\sqrt{5}\right)^2}\)

\(=\left|3-\sqrt{5}\right|\)

\(=3-\sqrt{5}\)(Vì \(3>\sqrt{5}\))

e) Ta có: \(\sqrt{17-12\sqrt{2}}\)

\(=\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}\)

\(=\sqrt{\left(3-2\sqrt{2}\right)^2}\)

\(=\left|3-2\sqrt{2}\right|\)

\(=3-2\sqrt{2}\)(Vì \(3>2\sqrt{2}\))

31 tháng 8 2017

Bạn xem lại câu 5 xem có sai đề không chứ mình tính mãi không ra

1 tháng 9 2017

Đề câu 5 k sai nhé. Dùng Mode 5 3 vẫn ra.

14 tháng 6 2018

Mình làm 5 bài trắc nha

Hỏi đáp Toán

14 tháng 6 2018

Hỏi đáp Toán

6 tháng 7 2018

a)  \(1+\sqrt{3}+\sqrt{5}+\sqrt{15}\)

\(=\left(1+\sqrt{3}\right)+\sqrt{5}\left(1+\sqrt{3}\right)\)

\(=\left(1+\sqrt{3}\right)\left(1+\sqrt{5}\right)\)

b)  \(\sqrt{10}+\sqrt{14}+\sqrt{15}+\sqrt{21}\)

\(=\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{7}\left(\sqrt{2}+\sqrt{3}\right)\)

\(=\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{7}\right)\)

c)  \(\sqrt{35}-\sqrt{15}+\sqrt{14}-\sqrt{6}\)

\(=\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)+\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{2}\right)\)

6 tháng 7 2018

e)  \(xy+y\sqrt{x}+\sqrt{x}+1\)

\(=y\sqrt{x}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)\)

\(=\left(\sqrt{x}+1\right)\left(y\sqrt{x}+1\right)\)

g)  \(3+\sqrt{x}+9-x\)

\(=\left(3+\sqrt{x}\right)+\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)\)

\(=\left(3+\sqrt{x}\right)\left(4-\sqrt{x}\right)\)