Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu trong biểu thức thì viết như này , còn trình bày thì anh kid đã làm rồi
a, \(đk:x>2\)
b, \(đk:x\ge0;x\ne9\)
a)
Các biểu thức sau có nghĩa khi \(\frac{1}{x^2-4}>0;x^2-4\ne0\Rightarrow x>2\)
b)
Biểu thức có nghĩa khi \(x\ge0;x\ne9\)
Có nghĩa khi:
\(x\ne0;x+3\ne0;\frac{x-1}{x^2\left(x+3\right)}\ge0\)
\(\Leftrightarrow x\ne0;x\ne-3;\orbr{\begin{cases}x< -3\\x\ge1\end{cases}}\)
a)\(\sqrt{\frac{x-2}{x+3}}\)có nghĩa khi \(\frac{x-2}{x+3}\)\(\ge0\)
TH1: \(x-2\ge0\)và \(x+3\ge0\) TH2:\(x-2\le0\) và \(x+3\le0\)
\(\Leftrightarrow x\ge2\) \(\Leftrightarrow x\ge-3\) \(\Leftrightarrow x\le2\) \(\Leftrightarrow x\le-3\)
\(\Rightarrow x\ge2\) \(\Rightarrow x\le-3\)
Vậy vs \(x\ge2\)và\(x\le-3\)thì \(\sqrt{\frac{x-2}{x+3}}\)có nghĩa
b)Để \(\frac{4-x}{x^2-25}+\sqrt{-x-7}\)có nghĩa thì:
\(\Rightarrow\hept{\begin{cases}x^2\\-x-7\ge0\end{cases}-25\ne0}\) \(\Rightarrow\hept{\begin{cases}x\ne5\\x\le-7\end{cases}}\)
Vậy vs \(x\le-7\) và \(x\ne5\)thì \(\frac{4-x}{x^2-25}+\sqrt{-x-7}\)có nghĩa
\(a,\sqrt{x^2-8x+18}=\sqrt{x^2-8x+16+2}\)
\(=\sqrt{\left(x-4\right)^2+2}\)
Vì \(\left(x-4\right)^2+2>0\)với \(\forall x\)
\(\Rightarrow\)Biểu thức luôn được xác định với mọi x
\(b,\sqrt{\frac{3x+4}{x-2}}\)
\(btxđ\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\frac{3x+4}{x-2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\\frac{3x+4}{x-2}\ge0\end{cases}}}\)
\(\frac{3x+4}{x-2}\ge0\)\(\Rightarrow\orbr{\begin{cases}3x+4\ge0;x-2\ge0\\3x+4< 0;x-2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-\frac{4}{3};x\ge2\\x< -\frac{4}{3};x< 2\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x< -\frac{4}{3}\end{cases}}}\)
Mà \(x\ne2\)\(\Rightarrow x>2\)hoặc \(x< -\frac{4}{3}\)
Phân thức có nghĩa khi\(\hept{\begin{cases}\sqrt{4-x}\ge0\\\sqrt{4-x}\ne0\end{cases}\Rightarrow\sqrt{4-x}>0}\)
\(\Leftrightarrow4-x>0\Rightarrow x< 4\)