Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ps đc viết dưới dạng số thập phân hữu hạn : \(\frac{1}{4};\frac{13}{50};-\frac{17}{125};\frac{7}{14}\)
ps đc viết dưới dạng só thập phân vô hạn tuần hoàn : \(-\frac{5}{6};\frac{11}{45}\)
\(\frac{1}{4}=0,25;\frac{13}{50}=0,26;-\frac{17}{125}=-0,136;\frac{7}{14}=0,5\)
\(-\frac{5}{6}=-0,8\left(3\right);\frac{11}{45}=0,2\left(4\right)\)
a: \(16=2^4\)
nên \(-\dfrac{5}{16}\) viết được dưới dạng số thập phân hữu hạn
\(-\dfrac{5}{16}=-0.3125\)
a)
Cách 1:
\(\dfrac{17}{80}=0,2125; \dfrac{611}{125}=4,888; \dfrac{133}{91}=1,(461538); \dfrac{9}{8}=1,125\)
Như vậy, trong những phân số trên, phân số không viết được dưới dạng số thập phân hữu hạn là: \(\dfrac{133}{91}\)
Cách 2: Vì các phân số trên đều tối giản và có mẫu dương
Ta có: \(80=2^4.5; 125=5^3; 91=7.13; 8=2^3\) nên chỉ có 91 có ước nguyên tố khác 2,5 nên \(\dfrac{133}{91}\) không viết được dưới dạng số thập phân hữu hạn
b) Ta có: \(\dfrac{133}{91} = 1,(461538) = 1,461538461538…..\)
Quan sát các chữ số ở các hàng tương ứng từ trái sang phải, vì 1= 1; 4 = 4; 1 < 6 nên 1,414213562...< 1,461538461538…..
Vậy \(\dfrac{133}{91}>\sqrt{2}\)
a: 12 khi phân tích thành nhân tử, có thừa số 3 là thừa số khác 2 và 5 ở trong nên 7/12 viết được dưới dạng số thập phân vô hạn tuần hoàn
Vì khi phân tích mẫu ra thừa số nguyên tố thì không có thừa số nào khác 2 và 5, nên cả bốn phân số này được viết dưới dạng số thập phân hữu hạn
a: Các số biểu diễn dưới dạng thập phân hữu hạn là
\(3\dfrac{1}{4}=3,25\)
\(\dfrac{7}{32}=0.21875\)
Ta có:
Chọn đáp án A.