K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2021

a, \(40x^2y-8xy-16x^2y^2=8xy\left(5x-1-2xy\right)\)

b, \(\left(x-y\right)\left(x+y\right)-3\left(x-y\right)=\left(x-y\right)\left(x+y-3\right)\)

c, \(\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)

7 tháng 8 2021

a) 40x2y - 8xy - 16x2y2

= 8xy( 5x - 1 - 2xy)

b) (x-y)(x+y)-3(x-y)    

= (x - y)( x + y - 3)

c)(x-y)2 -5(x-y)

=(x - y)(x - y - 5)

\(16x^2+y^2+4y-16x-8xy\)

\(=\left(4x-y\right)^2-4\left(4x-y\right)\)

\(=\left(4x-y\right)\left(4x-y-4\right)\)

8 tháng 10 2017

a) \(16x^2+y^2+4y-16x-8xy\)

\(=\left(4x\right)^2-8xy+y^2+4\left(y-4x\right)\)

\(=\left(4x-y\right)^2+4\left(y-4x\right)\)

\(=\left(y-4x\right)^2+4\left(y-4x\right)=\left(y-4x\right)\left(y-4x+4\right)\)

11 tháng 10 2019

Nhanh lên

11 tháng 10 2019

a) 16x2(x - y)2 - 10y(y - x)3

= 16x2(y - x)2 - 10y(y - x)3

= 2(y - x)2[8x2 - 5y(y - x)]

= 2(y - x)2(8x2 + 5xy - 5y2)

b) a2 -b2 + 4ab - 9 (sai đề)

1, 2x2 - 8xy - 5x + 20y

= (2x2 - 5x) - (8xy - 20y)

= x(2x - 5) - 4y(2x - 5)

= (2x - 5) (x - 4y)

2,  x- x2y - xy + y2

= (x3 - xy) - (x2y - y2)

= x(x2 - y) - y(x2 - y)

= (x2 - y) (x - y)

3, x2 - 2xy - 4z+ y2

= (x2 - 2xy + y2) - 4z2

= (x - y)2 - (2z)2 

= (x - y - 2z) (x - y + 2z)

4, a3 + a2b - a2c - abc

= (a3 - a2c) + (a2b - abc)

= a2(a - c) + ab(a - c)

= (a - c) (a2 + ab)

5, x+ y3 + 3x2y + 3xy- x - y

= (x3 + 3x2y + 3xy2 + y3) - (x + y)

= (x + y) 3 - (x + y)

= (x + y) [(x + y)2 - 1]

= (x + y) (x + y - 1) (x + y + 1)

4 tháng 10 2018

chịu thôi tớ ko biết

8 tháng 7 2019

\(1a,8x^2y^2-12x^3+6x^2\)

\(=2\left(4x^2y^2-13x^3+3x^2\right)\)

\(b,5x\left(x-y\right)-\left(x-y\right)\)( sai đề hả )

\(=\left(x-y\right)\left(5x-1\right)\)

\(c,4x\left(x-2\right)-\left(2-x\right)^2\)

\(=4x\left(x-2\right)-\left(x-2\right)^2\)

\(=\left(x-2\right)\left(4x-x+2\right)=\left(x-2\right)\left(3x+2\right)\)

\(2,\)\(x\left(x-3\right)-\left(3-x\right)=0\)

\(\Rightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)

8 tháng 7 2019

phần b làm theo đề thôi nhé ko biết đầu bài đúng ko

\(5x\left(x-y\right)-\left(y-y\right)\)

\(=5x\left(x-y\right)\)

HA ha ngắn gọn vãi

15 tháng 1 2017

a)\(\frac{3x\left(1-x\right)}{1\left(x-1\right)}=\frac{-3x\left(x-1\right)}{x-1}=-3x\)

Bài 1: 

a: \(x^2\left(3x+2\right)=3x^3+2x^2\)

b: \(\left(x-2\right)\left(3x^2-4x+1\right)\)

\(=3x^3-4x^2+x-6x^2+8x-2\)

\(=3x^2-10x^2+9x-2\)

c: \(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(x-3\right)\left(x+3\right)\)

\(=27x^3+8-x^2+9=27x^3-x^2+17\)

d: \(=\left(x+y-x-y+z\right)\left(x+y+x+y-z\right)\)

\(=z\left(2x+2y-z\right)\)

\(=2xz+2yz-z^2\)

12 tháng 10 2015

a,X^3-16x =x(x^2-16)

b,y(y-2)-3(y-2)=(y+3).(y-2)

c,x^2+4x+4-y^2=(x+2)^2-y^2=(x+y+2).(x+2-Y)

D,4^2y^3-12x^2y^4+16X^5y^3=4x^2y^2(y-3y^2+4X^3y)

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7