K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 9 2021

\(y'=4x\left(x^2-4\right)\left(1-2x\right)^3-6\left(1-2x\right)^2\left(x^2-4\right)^2\)

\(=2\left(x^2-4\right)\left(1-2x\right)^2\left[2x\left(1-2x\right)-3\left(x^2-4\right)\right]\)

\(=2\left(x^2-4\right)\left(1-2x\right)^2\left(-7x^2+2x+12\right)\)

\(y'=0\) có 4 nghiệm bội lẻ \(\Rightarrow\) hàm có 4 cực trị

AH
Akai Haruma
Giáo viên
24 tháng 1 2017

Lời giải:

Ta có \(y'=3x^2-6mx+3(m+6)=0\) có hai nghiệm $x_1,x_2$ chính là hoành độ hai cực trị của đồ thị hàm số. Theo hệ thức Viet:

\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m+6\end{matrix}\right.(1)\)

Gọi đường thẳng qua hai điểm cực trị có PT \((d):y=ax+b\)

Ta có: \(\left\{\begin{matrix} y_1=ax_1+b=x_1^3-3mx_1^2+3(m+6)x_1+1\\ y_2=ax_2+b=x_2^3-3mx_2^2+3(m+6)x_2+1\end{matrix}\right.\)

Dựa vào $(1)$ và biến đổi đơn giản:

\(\Rightarrow a(x_1-x_2)=(x_1-x_2)[x_1^2+x_1x_2+x_2^2-3m(x_1+x_2)+3(m+6)]\)

\(\Rightarrow a=x_1^2+x_1x_2+x_2^2-3m(x_1+x_2)+3(m+6)=-2m^2+2m+12\)

\(\Rightarrow 2b=y_1+y_2-a(x_1+x_2)=2m^2+12m+2\Rightarrow b=m^2+6m+1\)

Do đó PTĐT thu được: \((d):y=(-2m^2+2m+12)x+m^2+6m+1\)

25 tháng 7 2018

Có thể xem hoàn chỉnh k ạ vì bị cắt

24 tháng 8 2016

ta co y'=6x2-6(2m+1)x+6m(m+1). de co 2 diem cuc tri trai dau thi y'=0 co 2no fb                              <=>Δ'>0                                                                                                                                  P<O                                                                                                            theo vi-et: x1.x2=m(m+1)                                                                                              <=>Δ'=9>0(dung)                                                                                                                  m(m+1)<0<=>-1<m<0

DD
8 tháng 10 2021

\(y=x^3-mx^2+\left(1-2m\right)x+1\)

\(y'=3x^2-2mx+1-2m\)

Để đồ thị hàm số đã cho có hai cực trị nằm về hai phía của trục tung thì phương trình \(y'=0\)có hai nghiệm phân biệt \(x_1,x_2\)thỏa mãn \(x_1x_2< 0\).

Ta có: \(y'=0\Leftrightarrow3x^2-2mx+1-2m=0\)(1)

Để (1) có hai nghiệm phân biệt thỏa mãn \(x_1x_2< 0\)thì: 

\(\hept{\begin{cases}\Delta'=m^2-3\left(1-2m\right)>0\\\frac{1-2m}{3}< 0\end{cases}}\Leftrightarrow m>\frac{1}{2}\).

Vậy \(m>\frac{1}{2}\)thỏa mãn ycbt. 

25 tháng 9 2021

có 5 điểm cực trị

NV
15 tháng 10 2020

1.

Pt hoành độ giao điểm: \(\frac{2x-3}{x+3}=x-1\)

\(\Leftrightarrow2x-3=x^2+2x-3\)

\(\Leftrightarrow x=0\Rightarrow y=-1\)

Vậy tung độ giao điểm là \(-1\)

2.

\(y'=4x^3+4x\Rightarrow\left\{{}\begin{matrix}y'\left(1\right)=8\\y\left(1\right)=3\end{matrix}\right.\)

Pttt: \(y=8\left(x-1\right)+3=8x-5\)

3.

\(y'=3x^2-6x\)

Lấy y chia y' và lấy phần dư ta được pt đường thẳng là: \(y=-2x+1\)