K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2015

Vì x>3 và |x| = 3 nên x=3k (do là p/s)

Vì 0>y và |y| = 2 nên y = (-2)k

Vậy \(\frac{x}{y}=\frac{3k}{\left(-2\right)k}=\frac{3}{-2}\)

=> \(\frac{x}{3}=\frac{y}{-2}\)

=> \(\left(\frac{x}{3}\right)^2=\left(\frac{y}{-2}\right)^2\) hay \(\frac{x^2}{9}=\frac{y^2}{4}\)

 Áp dụng t/c dãy tỉ số = nhau được:

 \(\frac{x^2}{9}=\frac{y^2}{4}=\frac{x^2-y^2}{9-4}=\frac{5}{5}=1\)

=> x^2 = 9  và y^2 = 4

Vì x>0 nên x=3

Vì y<0 nên y=-2

 

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

2 tháng 11 2015

Shift + \ nha pạn Smile

2 tháng 11 2015

\(\frac{IxI}{IyI}=\frac{3}{2}=>\frac{IxI}{3}=\frac{IyI}{2}=>\frac{IxI^2}{3^2}=\frac{IyI^2}{2^2}=>\frac{x^2}{9}=\frac{y^2}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{9}=\frac{y^2}{4}=\frac{x^2-y^2}{9-4}=\frac{5}{5}=1\)

=>x2=9=>x=-3,3

    y2=4=>y=-2,2

Vậy (x,y)=(2,3),(2,-3),(-2,3),(-2,-3)

11 tháng 10 2016

Ta có:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\)

Ta có:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{xa^2}{a^3}=\frac{yb^2}{b^3}=\frac{zc^2}{c^3}=\frac{a^2x+b^2y+c^2z}{a^3+b^3+c^3}\)

Ta có\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Rightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^3}{a^2x}=\frac{y^3}{b^2y}=\frac{z^3}{c^2z}=\frac{x^3+y^3+z^3}{a^2x+b^2y+c^2z}\)

\(A=\frac{\left(x^3+y^3+z^3\right)\left(a^3+b^3+c^3\right)\left(a+b+c\right)}{\left(x+y+z\right)\left(a^2x+b^2y+c^2z\right)^2}=\frac{x^3+y^3+z^3}{a^2x+b^2y+c^2z}\cdot\frac{a^3+b^3+c^3}{a^2x+b^2y+c^2z}\cdot\frac{a+b+c}{x+y+z}\)

\(=\frac{x^2}{a^2}\cdot\frac{a}{x}\cdot\frac{a}{x}\)=1

12 tháng 10 2016

[0ferh0g-y\pj=up-l][ki;,'j;.gk9r8goyu-[jl;mjfiweyu

28 tháng 2 2019

dùng tính chất của dãy tỉ số bằng nhau

8 tháng 2 2017

A=\(\left[\frac{x\left(x-y\right)}{y\left(x+y\right)}+\frac{\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\right]:\left[\frac{y^2}{x\left(x-y\right)\left(x+y\right)}+\frac{1}{x+y}\right]\frac{ }{ }\)

=\(\left[\frac{x^2\left(x-y\right)+y\left(x-y\right)\left(x+y\right)}{xy\left(x+y\right)}\right]:\left[\frac{y^2+x\left(x-y\right)}{x\left(x-y\right)\left(x+y\right)}\right]\)=\(\frac{\left(x-y\right)\left(x^2+y^2+xy\right)}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{y^2+x\left(x-y\right)}\)

=\(\frac{\left(x-y\right)^2\left(x^2+y^2+xy\right)}{y\left(x^2+y^2-xy\right)}\)=\(\frac{\left(x-y\right)^2\left(x^2+xy+\frac{y^2}{4}+\frac{3y^2}{4}\right)}{y\left(x^2-xy+\frac{y^2}{4}+\frac{3y^2}{4}\right)}\)=\(\frac{\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}{y.\left[\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}\)

Ta nhận thấy các số trong ngoặc đều dương.

=> Để A>0 thì y>0

Vậy để A>0 thì y>0 và với mọi x

7 tháng 8 2016

\(\frac{x}{3}=\frac{y}{5}\)

=> \(\frac{x^4}{3^4}=\frac{y^4}{5^4}=\frac{x^2.y^2}{3^2.5^2}=\frac{225}{225}=1\)

=> x4 = 34 => x = 3 hoặc x = -3

y4 = 54 => x = 5 hoặc x = -5

KL: (x; y) = (3; 5) ; (-3; -5)

7 tháng 8 2016

Đặt:

\(\frac{x}{3}=\frac{y}{5}=k\)

Ta có:

\(\frac{x}{3}=k\Rightarrow x=k.3\)

\(\frac{y}{5}=k\Rightarrow y=k.5\)

Thế vào \(x^2y^2=225\), ta có:

\(\left(k.3\right)^2.\left(k.5\right)^2=225\)

\(\Rightarrow\left(k^2.15\right)^2=225\)

\(\Rightarrow\left(k^2.15\right)=15\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k=1\)hoặc \(-1\)

x ; y tự tìm bạn.

=> x = -3

y = -5

21 tháng 7 2019

Đặt \(\frac{x}{5}=\frac{y}{3}=k\)

\(\Rightarrow x=5k;y=3k\)

Ta có:

\(25k^2+9k^2=4\)

\(\Rightarrow29k^2=4\)

\(\Rightarrow k=\pm\sqrt{\frac{4}{29}}\) 

P/S:Có lẽ sai đề hoặc mik lm sai chỗ nào đó:V

\(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta được

\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow\frac{x^2}{5^2}=\frac{2}{17}\Rightarrow x^2=\frac{2.5^2}{17}=\frac{50}{17}\Rightarrow x=\sqrt{\frac{50}{17}}\)

\(\Rightarrow\frac{y^2}{3^2}=\frac{2}{17}\Rightarrow y^2=\frac{2.3^2}{17}=\frac{18}{17}\Rightarrow y=\sqrt{\frac{18}{17}}\)

_Tử yên_