Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi: \(1h20p=\dfrac{4}{3}h\)
Gọi \(a,b\left(giờ\right)\) là thời gian làm một mình xong việc của hai người \(\left(a,b>0\right)\)
\(\Rightarrow\) Trong \(1h\) người \(1\) làm đc \(\dfrac{1}{a}\) việc.
\(\Rightarrow\) Trong \(1h\) người \(2\) làm đc \(\dfrac{1}{b}\) việc
Nếu hai người cùng làm một lúc thì sau \(\dfrac{4}{3}h\) là xong nên ta có phương trình:
\(\dfrac{4a}{3}+\dfrac{4b}{3}=1\)
Lại có: Người \(1\) làm trong \(\dfrac{1}{6}h\) và người \(2\) làm trong \(\dfrac{1}{5}\) giờ thì được \(\dfrac{1}{15}\) việc nên ta có phương trình:\(\dfrac{a}{6}+\dfrac{b}{5}=\dfrac{2}{15}\left(2\right)\)
Từ: \(\left(1\right)+\left(2\right)\) ta có hệ:
\(\left\{{}\begin{matrix}\dfrac{4a}{3}+\dfrac{4b}{3}=1\\\dfrac{a}{6}+\dfrac{b}{5}=\dfrac{2}{15}\end{matrix}\right.\)
\(\Leftrightarrow\) Tự giải hệ ta được nghiệm:
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\) \(\left(tm\right)\)
Vậy nếu làm một mình thì người một làm trong \(2h\) và người hai làm trong \(4h\)
cái hệ đây =)))))
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{18}\\\frac{6}{x}+\frac{8}{y}=\frac{40}{100}\end{cases}}\)rồi auto giải nốt =))))))
Ngại viết mấy cái gọi x,y rồi điều kiện nếu cần ib riêng cho tớ nhé :))))))))
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\\\dfrac{6}{x}+\dfrac{8}{y}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{x}+\dfrac{6}{y}=\dfrac{1}{3}\\\dfrac{6}{x}+\dfrac{8}{y}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{2}{y}=-\dfrac{1}{15}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=30\\\dfrac{1}{x}=\dfrac{1}{18}-\dfrac{1}{30}=\dfrac{1}{45}\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(45;30\right)\)
Gọi x, y (ngày) lần lượt là thời gian mà đội thứ nhất và đội thứ hai làm riêng xong công việc. Điều kiện: x > 12, y > 12
Như vậy, trong 1 ngày đội thứ nhất làm được 1/x (công việc), đội thứ hai làm được 1/y (công việc).
Trong 1 ngày, cả hai đội làm được 1/12 (công việc)
Ta có phương trình: 1/x + 1/y = 1/12
Vì hai đội chỉ cùng làm trong 8 ngày, sau đó đội thứ nhất làm tiếp một mình trong 7 ngày nữa thì xong việc nên ta có: 8/12 + 7/x = 1
Ta có hệ phương trình:
Đặt m = 1/x , n = 1/y , ta có:
Ta có: 1/x = 1/21 ⇔ x = 21
1/y = 1/28 ⇔ y = 28
Giá trị của x và y thỏa điều kiện bài toán.
Vậy đội thứ nhất làm một mình xong công việc trong 21 ngày, đội thứ hai làm một mình xong công việc trong 28 ngày.
Gọi thời gian người 1 chở hết đống cát khi làm một mình là x
Mỗi giờ người 1 chở được lượng cát gấp rưỡi người 2 nên thời gian người 2 chở hết đống cát khi làm một mình là 1,5x
Theo đề, ta có phương trình:
\(\dfrac{1}{x}+\dfrac{1}{1.5x}=\dfrac{1}{10}\)
=>\(\dfrac{1}{x}=\dfrac{1}{10}:\left(1+\dfrac{1}{1.5}\right)=\dfrac{3}{50}\)
=>x=50/3
=>Người 2 cần 1,5*50/3=25(h)