K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

chỗ hỏi chấm đó là 99

29 tháng 9 2020

Hàng 1: (17+8)=5x5

Hàng 2: (13+7)=5x4

Hàng 3: (6+12)=6x3

Hàng 4: (10x6)=4x15

=> ?=15

29 tháng 9 2020

Xin lỗi!

Hàng 4: (10+6)=4x4

=> ?=4

25 tháng 1 2016

Tóan này lớp 7 nhé

Ta có: = (1.0 + 2.0 + 3.2 + 4.n +5.10 + 6.12 + 7.7 + 8.6 +9.4 + 10.1)/N = 60,6

=> 271 + 4n = 60,6N (1)

Lại có: 0+0+2+n+10+12+7+6+4+1 = N => 42 + n = N thế vào (1) có:

271 + 4n = 60,6(42 +n) 

271 + 4n = 2545,2 + 60,6n

=> tìm n => N

Bạn xem lại số liệu bài cho, chứ ko thể có tần số n = số âm nhé. 

Cách làm những bài này là như vậy

 

5 tháng 3 2018

không phải số thì là số 2 

5 tháng 3 2018

tổng trên =9 

tổng dưới =9 

Nên ?=3 (mình nghĩ thế ) :))

Chiều dài 22 18 15 20
Chiều rộng 14 5 11 13
Chiều cao 5 6 8 8
Diện tích 1đáy 308 90 165 260
Thể tích 1540 540 1320 2080
20 tháng 3 2018

1) Diện tích 1 đáy: 22 x 14 = 308

Thể tích: 22x 14 x 5 = 1540

2) Chiều rộng: 90 : 18 = 5

Thể tích: 18 x 5 x 6 = 90 x 6 = 540

3) Chiều rộng: 1320 : (15 x 8) = 11

Diện tích 1 đáy: 15 x 11 = 165

4) Chiều rộng: 260 : 20 = 13

Chiều cao: 2080 : 260 = 18


18 tháng 12 2017
a52\(\sqrt{13}\)
b12\(\sqrt{6}\)6
d13\(\sqrt{10}\)7
HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

a) Quan sát bảng trên ta thấy khi x = 1; x = 2; x = 3; x = 4; x = 5; x = 6 thì ta đều xác định giá trị của y là y = − 2.

Vì với mỗi giá trị của x ta xác định được một giá trị của y nên đại lượng y là hàm số của đại lượng x.

b) Quan sát bảng trên ta thấy khi x = 1; x = 2; x = 3; x = 4; x = 1; x = 5 thì ta đều xác định  giá trị của y lần lượt là: y = − 2; y = − 3; y = − 4; y = − 5; y = − 6; y = − 7.

Vì x = 1 nhận hai giá trị y = -2 và y = -6 nên đại lượng y không là hàm số của đại lượng x.

20 tháng 9 2015

a) điểm kiểm tra học kì I môn toán của học sinh 7A

b) Bảng tần số :

X45678910 
n2386841Tổng:32
X.n8154842643610Tổng : 223
  223 :7=233/7    

c) 6 và 8

bài ko hoàn chỉnh lém but mình trả lời đầu tiên nha bn bùi vân anh !!!!!!

 1.Phép tính 32x+6−x−62x2+6x32x+6−x−62x2+6x có kết quả là:   A. −1x+3−1x+3  B. 1x+31x+3  C. 1x1x  D. −1x−1x  2.Hiệu của hai phân thức a+9ba2−9b2a+9ba2−9b2 và phân thức 3ba2+3ab3ba2+3ab là phân thức nào sau đây:   A. 1a1a.  B. a+3ba(a−3b)a+3ba(a−3b).  C. −a+3ba(a−3b)−a+3ba(a−3b).  D. 1a−3b1a−3b.  3.Thực hiện phép tính: 3x−64−9x2−13x−2+13x+23x−64−9x2−13x−2+13x+2được kết...
Đọc tiếp

 

1.

Phép tính 32x+6−x−62x2+6x32x+6−x−62x2+6x có kết quả là:

  

 A. −1x+3−1x+3 
 B. 1x+31x+3 
 C. 1x1x 
 D. −1x−1x 

 

2.

Hiệu của hai phân thức a+9ba2−9b2a+9ba2−9b2 và phân thức 3ba2+3ab3ba2+3ab là phân thức nào sau đây:

  

 A. 1a1a. 
 B. a+3ba(a−3b)a+3ba(a−3b). 
 C. −a+3ba(a−3b)−a+3ba(a−3b). 
 D. 1a−3b1a−3b. 

 

3.

Thực hiện phép tính: 3x−64−9x2−13x−2+13x+23x−64−9x2−13x−2+13x+2được kết quả là:

  

 A. 12x+312x+3 
 B. x−23x+2x−23x+2 
 C. −13x+2−13x+2 
 D. 13x−213x−2 

 

4.

Giá trị của biểu thức P=10(x+2)(3−x)−12(3−x)(x+3)−1(x+3)(x+2)P=10(x+2)(3−x)−12(3−x)(x+3)−1(x+3)(x+2)tại x = −34−34 là:

  

 A. 16451645. 
 B. −74−74. 
 C. −158−158. 
 D. 7474 

 

5.

Cho x+4x2−4−1x2+2x=Px+4x2−4−1x2+2x=P thì P bằng phân thức nào sau đây :

  

 A. x−1x(x−2)x−1x(x−2) 
 B. x2−3x−2x(x2−4)x2−3x−2x(x2−4) 
 C. x3+3x+2x(x2−4)x3+3x+2x(x2−4) 
 D. x+1x(x−2)x+1x(x−2) 

 

6.

Tổng hai phân thức 1−xx3−11−xx3−1và 1x2−x+11x2−x+1 bằng phân thức nào sau đây:

  

 A. 2(x−1)x3+12(x−1)x3+1. 
 B. 2−xx3+12−xx3+1. 
 C. 2+xx3+12+xx3+1. 
 D. 2x3+12x3+1 

 

7.

Giá trị của biểu thức P=4a2−3a+17a3−1+2a−1a2+a+1+61−aP=4a2−3a+17a3−1+2a−1a2+a+1+61−a tại a = −12−12 là:

  

 A. - 9 
 B. - 16 
 C. 16 
 D. 9 

 

8.

Tổng của các phân thức P: x2+2xy+4y2x2−9y2;x3y−x;y3y+xx2+2xy+4y2x2−9y2;x3y−x;y3y+xbằng phân thức nào sau đây:

  

 A. x2+y2x2−9y2x2+y2x2−9y2 
 B. y2x2−9y2y2x2−9y2 
 C. (x+y)2x2−9y2(x+y)2x2−9y2 
 D. 0 

 

9.

Tổng của các phân thức: x+2y2y2−xy,8xx2−4y2x+2y2y2−xy,8xx2−4y2và 2y−x2y2+xy2y−x2y2+xy là phân thức nào sau đây:

  

 A. 2(2x−y)x(2y+x)2(2x−y)x(2y+x) 
 B. 2(2y−x)y(2y+x)2(2y−x)y(2y+x). 
 C. 2y−xy(2y+x)2y−xy(2y+x). 
 D. 2(x−2y)y(2y+x)2(x−2y)y(2y+x). 

 

10.

Tổng của các phân thức ba2−b2,aa2+ab−2a−2bba2−b2,aa2+ab−2a−2b và 1a+b1a+b là:

  

 A. −2a2−2a+ab(a2−b2)(a−2)−2a2−2a+ab(a2−b2)(a−2). 
 B. 2a2−2a+ab(a2−b2)(2−a).2a2−2a+ab(a2−b2)(2−a). 
 C. 2a2+2a−ab(a2−b2)(a−2)2a2+2a−ab(a2−b2)(a−2) 
 D. 2a2−2a−ab(a2−b2)(a−2)2a2−2a−ab(a2−b2)(a−2). 
0