K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2021

tham khảo:

https://olm.vn/hoi-dap/detail/1070944541422.html

 

19 tháng 6 2021

Xét các số 2, 22, 222,....., 222.....222 (có p + 1 chữ số 2)

=> có p + 1 số, các số dư có thể khi  chia cho p là 0 , 1, ..., p - 1 (p số dư)

=> theo ngly dirichlet thì có chắc chắn ít nhất 2 số có cùng số dư

lấy 2 số đó trừ đi nhau thì được một số chỉ gồm chữ số 2 và 0 chia hết cho p

24 tháng 1 2017

Gọi số trận đấu mà anh Nam chơi ngày thứ nhất, thứ 2, ..., ngày thứ 20 lần lược là: a1; a2; ...; a n.

Xét 20 tổng :

S1 = a1

S2 = a1 + a2

...................

S n = a1 + a2 + ... + a​ n

Ta có: S1 < S2 < .... < S n < 36 (vì trong 20 ngày anh Nam không chơi quá 12.3 = 36 trận)

Ta biết rằng 1 số tự nhiên bất kỳ khi chia cho 20 thì có 19 số dư khác 0 là: 1, 2,...,19.

Giờ quay lại bài toán ta thấy 

Nếu trong 20 tổng này có 1 tổng chia hết 20 thì bài toán đã được chứng minh (vì các tổng đó lớn hơn 0 nhỏ hơn 36 nên tổng chỉ có thể là 20). 

Còn nếu trong 20 tổng này không có tổng nào chia hết cho 20 thì sẽ tồn tại ít nhất 2 tổng có cùng số dư khi chia cho 20.

Giả sử hai tổng đó là S m, S n (m > n) thì ta có S m - S n = (a1 + a2 + ... + a m) - (a1 + a2 + ... + a n) = a n+1 + a n+2 + ...+ a​ m chia hết cho 20. Hay S m - S​ n = 20.

Vậy tồn tại một số ngày liên tiếp trong đó anh chơi đúng 20 trận.

25 tháng 1 2017

20 đấy Vương ạ

19 tháng 4 2017

a) Dấu hiệu: điểm số của mỗi lần bắn.

Xạ thủ đã bắn: 30 phát

Nhận xét:

Xạ thủ đã bắn 30 phát, mỗi lần bắn điểm từ 7 đến 10, điểm bắn chủ yếu từ 8 đến 10, bắn đạt điểm 10 là 8 lần chiếm 26,7%.



Mình thật sự không biết đây là dạng toán lớp mấy... Dăng đại vào toán 7, mong các bạn giúp đỡ ạ! Cảm ơn nhiều!Bài 1: Một giải bóng đá có n đội tham gia thi đấu vòng tròn 1 lượt ( 2 đội bất kỳ đấu với nhau đúng 1 trận). Đội thắng được 3 điểm và đội thua không được điểm nào và đội hòa được 1 điểm. Kết thúc giải thưởng người ta nhận thấy rằng: số trận thắng thua...
Đọc tiếp

Mình thật sự không biết đây là dạng toán lớp mấy... Dăng đại vào toán 7, mong các bạn giúp đỡ ạ! Cảm ơn nhiều!

Bài 1: Một giải bóng đá có n đội tham gia thi đấu vòng tròn 1 lượt ( 2 đội bất kỳ đấu với nhau đúng 1 trận). Đội thắng được 3 điểm và đội thua không được điểm nào và đội hòa được 1 điểm. Kết thúc giải thưởng người ta nhận thấy rằng: số trận thắng thua gấp đôi trận hòa và tổng số điểm của các đội là 176. Tìm n?

Bài 2: Một nước có 20 sân bay mà khoảng cách giữa 2 sân bay nào cũng khác nhau, mỗi máy bay cất cánh từ 1 sân bay và bay đến sân bay nào gần nhất. C/m trên bất kì sân bay nào cũng không thể có quá 3 máy bay đến.

Thanksssssssssssssssssssssssssssssssssss ạ.............................. !!!!!!!!!!!!!!!!!!!!!

vui

1
6 tháng 11 2016

Bài này quen quá, hình như là toán lớp 5 thì phải

1/ Ta có: Trận thắng 3 điểm, trận hòa 2 điểm, trận thua 1 điểm

Số trận thắng-thua gấp đôi số trận hòa

Tổng số điểm là 176 điểm

Tỉ số điểm cho trận thắng-thua và hòa là:

(3x2) / (2x1) = 3/1

Tồng số phần bằng nhau: 3+1=4 (phần)

Số điểm cho các đội hòa là:

176 / 4 = 44 (điểm)

Số trận hòa là: 44 / 2 = 22 (trận)

Số điểm cho các đội thắng-thua là:

176 - 44 = 132 (điểm)

Số trận thắng-thua là:

132 / 3 = 44 (trận)

Tổng số các trận đấu là: 44+22 = 66 (trận)

Do n là số đội nên

n.(n-1) : 2

Ta được:

n.(n-1) : 2 = 66

n.(n-1) = 66.2 = 132

Do n và n-1 là 2 số tự nhiên liên tiếp

nên 132 = 12.11

=> n = 12

Vậy có 12 đội thi đấu

27 tháng 10 2020

Đề ở trên là thắng 3đ, thua 0đ, hòa 1đ mà

20 tháng 4 2017

Xét tam giác vuông AHB (^AHB = 90°) ta có:

AB2 = AH2 + HB2 (vì bình phương cạnh huyền bằng tổng bình phương 2 cạnh góc vuông).

hay 52 = 32 + HB2

=> HB2 = 52 - 32 = 25 - 9 = 16.

HB = \(\sqrt{16}\) = 4.

Vậy HB = 4m.

Độ dài cạnh CH là:

CH = BC - HB

hay CH = 10 - 4 = 6 (m)

Vậy cạnh CH = 6m.

Xét tam giác vuông AHC (^AHC = 90°) ta có:

AC2 = AH2 + CH2

hay AC2 = 32 + 62 = 9 + 36 = 45.

AC = \(\sqrt{45}\approx7.\)

Vậy AC \(\approx7m\).

Độ dài ACD là:

ACD = AC + CD

hay ACD = 7 + 2 = 9 (m).

Vậy ACD = 9m.

2 lần BA là:

5.2 = 10 (m)

Vậy 2 lần BA = 10m.

Mà ACD < BA (9 < 10) nên đường trượt ACD ko gấp hơn hai lần đường lên BA.

Vậy bạn Mai nói sai, bạn Vân nói đúng.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Trong tam giác BCD, góc DCB là góc tù nên là góc lớn nhất. Cạnh DB đối diện với góc lớn nhất nên là cạnh lớn nhất

\( \Rightarrow \) DB > DC (1)

Vì góc DBA là góc ngoài tại đỉnh B của tam giác BCD nên \(\widehat {ABD} > \widehat {BCD}\)nên góc DBA cũng là góc tù.

Trong tam giác ABD, góc DCA là góc tù nên là góc lớn nhất. Cạnh DA đối diện với góc lớn nhất nên là cạnh lớn nhất

\( \Rightarrow \) DA > DB (2)

Từ (1) và (2) \( \Rightarrow \) DA > DB > DC

Vậy DA dài nhất, DC ngắn nhất

Do đó, cầu thủ C gần trái bóng nhất, cầu thủ A xa trái bóng nhất.

2 tháng 6 2017

Ta có: góc B + góc D = 1200 + 600 = 1800

Mà hai góc này TCP

=> AB // CD

Xét tam giác ABO và tam giác CDO có:

AB = CD (GT)

ABC = BCD (AB // CD)

BAD = ADC (AB // CD)

=> tam giác ABO = tam giác CDO

=> AO = OD

=> O là trung điểm AD

Ta có: tam giác ABO = tam giác CDO

=> BO = OC

=> O là trung điểm BC