Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề rồi bạn nha . Mk chứng minh lỗi nha
Vì đường thằng \(xx'\)cắt \(yy'\)tại \(O\)
\(\Rightarrow xOx'=180^o\)
Vì \(xx'\)là 1 đường thẳng .
[ \(Ox\)đối với \(Ox'\)]
Vì vậy nên \(xOy+yOx'=180^o\)( cắt tại O )
O x x' y y'
cho 2 đường thẳng xx' và yy' cắt nhau tại O sao cho xO6y=2.x'Ôy. Tính các góc xOy, x'Oy, xOy', x'Oy'
\(\widehat{xOy}=\widehat{x'Oy'}=120^0;\widehat{x'Oy}=\widehat{xOy'}=60^0\)
Ta có tổng của 4 góc đó là 360 độ
Số đo góc 1 là :
360 - 290 = 70 độ
Số đo góc kề bù với góc vừa tìm là :
108 - 70 = 110 độ
Hai góc đối đỉnh với hai góc vừa tìm là 70 độ và 110 độ
Suy ra số đo 4 góc là : 70 độ ; 110 độ ; 70 độ ; 110 độ
Ta có : tổng của 4 góc đó bằng 360 độ
Số đo 1 góc là:
360 - 290 = 70 (độ)
Số đo góc kề bù với góc vừa tìm là:
180 - 70 = 110 (độ)
Hai góc đối đỉnh với hai góc vừa tìm lần lượt là 70 độ và 110 độ
Vậy số đo bốn góc là 70 độ; 110 độ; 70 độ; 110độ
Ta sẽ giả sử tổng số đo 3 góc EOM,EON,FOM là 250 độ như đề bài yêu cầu
Cách 1:
Ta có: \(\widehat{EOM}+\widehat{EON}+\widehat{FOM}+\widehat{FON}=360^0\)
=>\(\widehat{FON}+250^0=360^0\)
=>\(\widehat{FON}=110^0\)
\(\widehat{FON}=\widehat{EOM}\)(hai góc đối đỉnh)
mà \(\widehat{FON}=110^0\)
nên \(\widehat{EOM}=110^0\)
\(\widehat{EOM}+\widehat{EON}=180^0\)(hai góc kề bù)
=>\(\widehat{EON}+110^0=180^0\)
=>\(\widehat{EON}=70^0\)
\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
mà \(\widehat{EON}=70^0\)
nên \(\widehat{FOM}=70^0\)
Cách 2: \(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
=>\(\widehat{EON}+\widehat{FOM}=2\cdot\widehat{EON}\)
\(\widehat{EON}+\widehat{FOM}+\widehat{EOM}=250^0\)
=>\(2\cdot\widehat{EON}+\widehat{EOM}=250^0\)(2)
Ta lại có: \(\widehat{EON}+\widehat{EOM}=180^0\)(hai góc kề bù)(1)
nên từ (1),(2) ta sẽ có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}=250^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}-\widehat{EON}-\widehat{EOM}=250^0-180^0=70^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\widehat{EON}=70^0\\\widehat{EOM}=180^0-70^0=110^0\end{matrix}\right.\)
\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
mà \(\widehat{EON}=70^0\)
nên \(\widehat{FOM}=70^0\)
\(\widehat{EOM}=\widehat{FON}\)(hai góc đối đỉnh)
mà \(\widehat{EOM}=110^0\)
nên \(\widehat{FON}=110^0\)
A O C D B
TH1: \(\widehat{AOC}+\widehat{AOD}+\widehat{BOD}=230o\)
Mà \(\widehat{AOC}=\widehat{BOD}\) (2 góc đối đỉnh)
=> \(2.\widehat{AOC}+\widehat{AOD}=230o\)
Mà \(\widehat{AOC}+\widehat{AOD}=180o\) (2 góc kề bù)
=> \(\left\{{}\begin{matrix}\widehat{AOC}=\widehat{BOD}=50o\\\widehat{AOD}=\widehat{BOC}=130o\end{matrix}\right.\)
TH2: \(\widehat{AOD}+\widehat{BOD}+\widehat{BOC}=230o\)
Mà \(\widehat{AOD}=\widehat{BOC}\) (2 góc đối đỉnh)
=> \(2.\widehat{AOD}+\widehat{BOD}=230o\)
Mà \(\widehat{AOD}+\widehat{BOD}=180o\)
=> \(\left\{{}\begin{matrix}\widehat{AOD}=\widehat{BOC}=50o\\\widehat{BOD}=\widehat{AOC}=130o\end{matrix}\right.\)
vô lí do \(\widehat{AOC}>\widehat{BOC}\)