K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

xOy + x'Oy = 180 độ rồi bạn

23 tháng 6 2018

Sai đề rồi bạn nha . Mk chứng minh lỗi nha

Vì đường thằng \(xx'\)cắt \(yy'\)tại \(O\)

\(\Rightarrow xOx'=180^o\)

Vì \(xx'\)là 1 đường thẳng .

\(Ox\)đối với \(Ox'\)]

Vì vậy nên \(xOy+yOx'=180^o\)( cắt tại O )

O x x' y y'

\(\widehat{xOy}=\widehat{x'Oy'}=120^0;\widehat{x'Oy}=\widehat{xOy'}=60^0\)

7 tháng 6 2017

Ta có tổng của 4 góc đó là 360 độ

Số đo góc 1 là :

360 - 290 = 70 độ

Số đo góc kề bù với góc vừa tìm là :

108 - 70 = 110 độ

Hai góc đối đỉnh với hai góc vừa tìm là 70 độ và 110 độ

Suy ra số đo 4 góc là : 70 độ ; 110 độ ; 70 độ ; 110 độ

7 tháng 6 2017

Ta có : tổng của 4 góc đó bằng 360 độ

                   Số đo 1 góc là:

                           360 - 290 = 70 (độ)

                   Số đo góc kề bù với góc vừa tìm là:

                           180 - 70 = 110 (độ)

Hai góc đối đỉnh với hai góc vừa tìm lần lượt là 70 độ và 110 độ

Vậy số đo bốn góc là 70 độ; 110 độ; 70 độ; 110độ

24 tháng 11 2023

Ta sẽ giả sử tổng số đo 3 góc EOM,EON,FOM là 250 độ như đề bài yêu cầu

Cách 1: 

Ta có: \(\widehat{EOM}+\widehat{EON}+\widehat{FOM}+\widehat{FON}=360^0\)

=>\(\widehat{FON}+250^0=360^0\)

=>\(\widehat{FON}=110^0\)

\(\widehat{FON}=\widehat{EOM}\)(hai góc đối đỉnh)

mà \(\widehat{FON}=110^0\)

nên \(\widehat{EOM}=110^0\)

\(\widehat{EOM}+\widehat{EON}=180^0\)(hai góc kề bù)

=>\(\widehat{EON}+110^0=180^0\)

=>\(\widehat{EON}=70^0\)

\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

mà \(\widehat{EON}=70^0\)

nên \(\widehat{FOM}=70^0\)

Cách 2: \(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

=>\(\widehat{EON}+\widehat{FOM}=2\cdot\widehat{EON}\)

\(\widehat{EON}+\widehat{FOM}+\widehat{EOM}=250^0\)

=>\(2\cdot\widehat{EON}+\widehat{EOM}=250^0\)(2)

Ta lại có: \(\widehat{EON}+\widehat{EOM}=180^0\)(hai góc kề bù)(1)

nên từ (1),(2) ta sẽ có hệ phương trình:

\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}=250^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}-\widehat{EON}-\widehat{EOM}=250^0-180^0=70^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\widehat{EON}=70^0\\\widehat{EOM}=180^0-70^0=110^0\end{matrix}\right.\)

\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

mà \(\widehat{EON}=70^0\)

nên \(\widehat{FOM}=70^0\)

\(\widehat{EOM}=\widehat{FON}\)(hai góc đối đỉnh)

mà \(\widehat{EOM}=110^0\)

nên \(\widehat{FON}=110^0\)

19 tháng 6 2021

A O C D B

TH1: \(\widehat{AOC}+\widehat{AOD}+\widehat{BOD}=230o\)

Mà \(\widehat{AOC}=\widehat{BOD}\) (2 góc đối đỉnh)

=> \(2.\widehat{AOC}+\widehat{AOD}=230o\)

Mà \(\widehat{AOC}+\widehat{AOD}=180o\) (2 góc kề bù)

=> \(\left\{{}\begin{matrix}\widehat{AOC}=\widehat{BOD}=50o\\\widehat{AOD}=\widehat{BOC}=130o\end{matrix}\right.\)

TH2: \(\widehat{AOD}+\widehat{BOD}+\widehat{BOC}=230o\)

Mà \(\widehat{AOD}=\widehat{BOC}\) (2 góc đối đỉnh)

=> \(2.\widehat{AOD}+\widehat{BOD}=230o\)

Mà \(\widehat{AOD}+\widehat{BOD}=180o\)

=> \(\left\{{}\begin{matrix}\widehat{AOD}=\widehat{BOC}=50o\\\widehat{BOD}=\widehat{AOC}=130o\end{matrix}\right.\)

vô lí do \(\widehat{AOC}>\widehat{BOC}\)