Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{AOC}=\widehat{BOD}=\frac{130^0}{2}=65^0\)(đối đỉnh nên 2 góc này = nhau)
=> \(\widehat{COB}=\widehat{AOD}=180^0-65^0=115^0\)(CMTT)
từ 2 điều trên tính đc số đo 4 góc tạo thành là \(360^0\)
tự vẽ hình nha
có AB và CD cắt nhau tại O
AOC+BOD=130độ
Mà AOC=BOD(vì đối đỉnh )
=>AOC=BOD=130độ/2=65độ
Mà AOC+COB=180độ ( vì kề bù )
65độ+COB=180độ
COB=180độ-65độ
COB=115độ
Mà COB=AOD ( vì đối đỉnh )
=>AOD=115độ
A B C D O
AÔC và BÔD là 2 góc đối đỉnh nên chúng bằng nhau, do đó có:
\(AÔC=BÔD=\frac{130^o}{2}=65^o\)
Có: AÔC + CÔB = 180 o ( 2 góc kề bù)
65o + CÔB = 180o
CÔB=180o-65o=115o
CÔB đối đỉnh với AÔD nên AÔD=CÔB=115o
Ta có 2 góc AOC và BOD đối đỉnh nên AÔC = BÔD = 130 độ/2 = 65 độ
Ta có AÔC + AÔD = 180 độ (kề bù)
=> AÔD = 180 độ - AÔC = 180 độ - 65 độ = 115 độ
Ta có 2 góc AOD và BOC đối đỉnh nên AÔD = BÔC = 115 độ
O 130 D A C B
Ta có: 2 góc AOC và BOC đối đỉnh nên AOC = BOD =130o : 2 = 65o
AOC + AOD = 180o ( kề bù )
\(\Rightarrow\)AOD = 180o - AOC = 180o - 65o = 115o
\(\Leftrightarrow\)Vậy a góc AOD và BOC đối đỉnh nên AOC = BOC = 115o
Ta có: A O C ^ = B O D ^ (hai góc đối đỉnh) mà A O C ^ + B O D ^ = 100 ° nên A O C ^ = B O D ^ = 100 ° : 2 = 50 ° .
Hai góc AOC và BOC kề bù nên B O C ^ = 180 ° − 50 ° = 130 ° .
Do đó A O D ^ = B O C ^ = 130 ° (hai góc đối đỉnh).
vì hai đoạn thẳng AB và CD cắt nhau suy ra hai góc AOC và góc BOD đối nhau
suy ra hai góc AOC = BOD
ta co AOC + BOD = 130
suy ra AOC + AOC = 130
2 AOC = 130
AOC = 65
vậy góc BOD = AOC = 65
vì hai góc aob và bod đối đỉnh nên bằng nhau mà hai góc công là bằng 180 độ nen hai goc bang 90 do cac goc con lai bang 90 do
mấy bạn trả lời rõ ràng vào nhé, được không. nếu có thể vẽ hihf dc thì vẽ luôn cho mk với. Mình k cho
^.^
\(\widehat{AOC}\) và \(\widehat{BOD}\) 2 góc đối đỉnh
\(\Rightarrow130^o:2=65^o\)
Ta có : \(\widehat{AOD}+\widehat{DOB}=180^o\) (kề bù)
\(\Rightarrow\widehat{AOD}=180^o-65^o=115^o\)
\(\widehat{AOD}và\widehat{COB}\) là 2 góc đối đỉnh
\(\Rightarrow\widehat{AOD}=\widehat{COB}\)