K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5 2019

Nhận thấy A không thuộc cả 2 đường thẳng nên đó là phương trình 2 cạnh BC và CD

Ta có \(AC=d\left(A;BC\right)\); \(AD=d\left(A;CD\right)\)

\(\Rightarrow S_{ABCD}=\frac{\left|2-3.1+5\right|}{\sqrt{1^2+\left(-3\right)^2}}.\frac{\left|3.2+1-5\right|}{\sqrt{3^2+1^2}}=\frac{4}{5}\)

10 tháng 2 2018

Ta thấy: điểm A không thuộc hai đường thẳng trên.

Độ dài hai cạnh kề của hình chữ nhật bằng khoảng cách từ A đến hai đường thẳng trên.

Độ dài 2 cạnh là:

do đó diện tích hình chữ nhật bằng : S= 2.1= 2

Chọn B.

30 tháng 3 2018

Ta kiểm tra thấy đỉnh A(7; 4) không nằm trên các đường thẳng d 1 : 7 x − 3 y + 5 = 0 ,   d 2 : 3 x + 7 y − 1 = 0  nên đây là các cạnh CB, CD. Ta có

S = d A ,   B C . d A ,   C D = 7.7 − 3.4 + 5 7 2 + − 3 2 . 3.7 + 7.4 − 1 3 2 + 7 2 = 1008 29

ĐÁP ÁN D

NV
9 tháng 3 2023

Thay tọa độ A vào 2 pt đường thẳng không thỏa mãn, vậy đó là 2 pt đường thẳng của các cạnh BC và CD

\(\Rightarrow\) Khoảng cách từ A đến 2 đường thẳng nói trên bằng độ dài 2 cạnh của hcn

\(\Rightarrow S=d\left(A;\Delta_1\right).d\left(A;\Delta_2\right)=\dfrac{\left|3-2.\left(-1\right)+1\right|}{\sqrt{1^2+\left(-2\right)^2}}.\dfrac{\left|2.3-1\right|}{\sqrt{2^2+1^2}}=6\)

16 tháng 3 2019

Ta  thấy điểm A không thuộc 2 đường thẳng đã cho.

Khoảng cách từ A đến 2 đường thẳng là:

Đáp án B

20 tháng 3 2021

Phương trình đường thẳng qua O và song song AB có dạng: xy=0x−y=0

 Tọa độ M là nghiệm của hệ: {x+3y6=0xy=0{x+3y−6=0x−y=0 M(32;32)⇒M(32;32)

Phương trình đường thẳng BC qua M, nhận (1;1)(1;1) là 1 vtpt có dạng:

1(x32)+1(y32)=0x+y3=01(x−32)+1(y−32)=0⇔x+y−3=0

Tọa độ B là nghiệm của hệ: {xy+5=0x+y3=0{x−y+5=0x+y−3=0 B⇒B

M là trung điểm BC  tọa độ C

O là trung điểm AC  tọa độ A

O là trung điểm BD 

Từ giả thiết suy ra điểm A không nằm trên 2 cạnh có phương trình đã cho. Bởi vậy, đó là phương trình của 2 đường thẳng chứa cạnh BC, CD, chẳng hạn \(BC:2x-3y+5\)

                                                                                          \(CD:3x+2y-7=0\)

Khi đó, đường thẳng chứa cạnh AB đi qua \(A\left(2;-3\right)\) và song song với đường thẳng CD, nên có phương trình :

                       \(3\left(x-2\right)+2\left(y+3\right)=0\)

            hay : \(3x+2y=0\) ẳng chứa cạnh AD là :

                             \(2x-3y-11=0\)