Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sai chính tả rồi kìa, dì là chỉ dùng cho dì của bn thôi, phải là gì mới đúng
theo công thức: D=(1+2+3+...+100)2
D=[(1+100)*100/2]2
D=[101*50]2
D=50502=25502500
công thức dạng chung n3=(n-2).n.(n+2) - 4n bạn thay vào òi làm nhé:
\(S=\left(-2\right)^0+\left(-2\right)^1+\left(-2\right)^2+\left(-2\right)^3+....+\left(-2\right)^{2014}+\left(-2\right)^{2015}\)
\(\left(-2\right)S=\left(-2\right)+\left(-2\right)^2+\left(-2\right)^3+\left(-2\right)^4+....+\left(-2\right)^{2016}\)
\(\left(-2\right)S-S=\left[\left(-2\right)+\left(-2\right)^2+...+\left(-2\right)^{2016}\right]-\left[1+\left(-2\right)^1+...+\left(-2\right)^{2015}\right]\)
\(S=\left(-2\right)^{2016}-1\)
a/ Ta tính trường hợp tổng quát có n số hạng. Ta có:
+/ S1 = 1 + 2 + 3 + ....+n = \(\frac{n\left(n+1\right)}{2}\)
+/ S2 = 1.2 + 2.3 + 3.4 +...+ n(n+1)
3S2 = 1.2.3 + 2.3.3 + 3.4.3 +..+ n(n+1).3
3S2= 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +..+ n(n+1)(n+2 -(n-1))
3S2= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +.. - (n-1)n(n+1) + n(n+1)(n+2)
3S2= n(n+1)(n+2)
=> S2 = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Tính S = 1² + 2² + ...+ n²
Ta có: S2 - S1 = [1.2 + 2.3 + 3.4 +...+ n(n+1)]-(1 + 2 + 3 + ....+n)
=> S2 - S1=(1.2-1)+(2.3-2)+(3.4-3)+...+[n(n+1)-n]
=> S2 - S1=1+4+9+...+n2=12+22+32+...+n2=S
Như vậy: S=S2-S1=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)
=> \(S=n\left(n+1\right).\left(\frac{n+2}{3}-\frac{1}{2}\right)\)
=> \(S=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Thay n=98 => \(S=\frac{98.99.197}{6}=318549\)
b/ 2014.2016=2014(2015+1)=2014+2014.2015=2014+2015(2015-1)=2014+20152-2015=20152-1<20152
Vậy 2014.2016<20152
Tính nhanh :
12.32 - 23 .(20150 + 13)
=22.3.32 - 23 .(1+1)
=22 . 33 - 23 .2
=22(33 -22)
=4.23=92
12.32-23.(20150+13)
=12.32-23.(1+1)
=12.32-23.2
=12.32-24
=12.9.16
=1728
#chúc bạn học tốt#
nhớ k mk nhé!!!
Đặt A=1+3+32+33+.........+32015 (1)
Ta có: 3A=3+32+33+34+...........+32016 (2)
Từ (1) và (2 ) => 3A-A=(3+32+33+34+...........+32016)-(1+3+32+33+............+32015)
=> 2A=32016-1
Vậy \(A=\frac{3^{2016}-1}{2}\)