Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}\)
\(\Rightarrow A>B\)
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+1014}+\frac{2013}{2013+1014}\)
Vì: \(\frac{2012}{2013+1014}< \frac{2012}{2013}\)và \(\frac{2013}{2013+2013}< \frac{2013}{2014}\)
\(\Rightarrow A>B\)
~ Rất vui vì giúp đc bn ~
\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2013}{2013}+\frac{1}{2013}+\frac{1}{2013}=\left(\frac{2013}{2014}+\frac{1}{2013}\right)+\left(\frac{2014}{2015}+\frac{1}{2013}\right)+1\)
Ta có: \(\frac{2013}{2014}+\frac{1}{2013}>\frac{2013}{2014}+\frac{1}{2014}=\frac{2014}{2014}=1\)
\(\frac{2014}{2015}+\frac{1}{2013}>\frac{2014}{2015}+\frac{1}{2015}=\frac{2015}{2015}=1\)
=> A > 1+ 1 + 1 = 3
A = |2013 - x| + |2014 - x| có GTNN
<=> |2013 - x| có GTNN và |2014 - x| có GTNN
Mà |2013 - x| < |2014 - x| nên ...
5\(\dfrac{8}{17}\):x + (-\(\dfrac{1}{17}\)) : x + 3\(\dfrac{1}{17}\) : 17\(\dfrac{1}{3}\)= \(\dfrac{4}{17}\)
\(\dfrac{93}{17}\).\(\dfrac{1}{x}\) + (-\(\dfrac{1}{17}\)) .\(\dfrac{1}{x}\) +\(\dfrac{3}{17}\)= \(\dfrac{4}{17}\)
\(\dfrac{1}{x}\).\(\dfrac{92}{17}\)=\(\dfrac{1}{17}\)
\(\dfrac{1}{1.4}\)+\(\dfrac{1}{4.7}\)+\(\dfrac{1}{7.10}\)+...+\(\dfrac{1}{x.\left(x+3\right)}\)=\(\dfrac{6}{19}\)
Đặt A = |x - 2013| + |x - 2014|
=> A = |x - 2013| + |2014 - x| \(\ge\)|x - 2013 + 2014 - x| = |1| = 1
Dấu "=" xảy ra <=> (x - 2013)(2014 - x) \(\ge\)0
=>2013 \(\le\) x \(\le\)2014
Vậy Min A = 1 tại 2013 \(\le\)x \(\le\)2014
Ta có \(\left|x-2013\right|+\left|x-2014\right|=\left|2013-x\right|+\left|x-2014\right|\)
AD Bất đẳng thức |A| +|B| \(\ge\left|A+B\right|\)
ta có \(\left|2013-x\right|+\left|x-2014\right|\ge\left|2013-x+x-2014\right|=1\)
vậy biểu thức đạt GTNN là 1 khi x=2013 hoặc x=2014