K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 12 2022

Lời giải:

a.

$A=6-2x^2-4x=6-2(x^2+2x)=8-2(x^2+2x+1)=8-2(x+1)^2$

Vì $(x+1)^2\geq 0$ với mọi $x$

$\Rightarrow A\leq 8-2.0=8$

Vậy GTLN của $A$ là $8$. Giá trị này đạt tại $x+1=0\Leftrightarrow x=-1$

b.

$B=4-4x^2-x=4-(4x^2+x)=\frac{65}{16}-(4x^2+x+\frac{1}{4^2})=\frac{65}{16}-(2x+\frac{1}{4})^2\leq \frac{65}{16}$
Vậy $B_{\max}=\frac{65}{16}$. Giá trị này đạt tại $2x+\frac{1}{4}=0$

$\Leftrightarrow x=\frac{-1}{8}$
c.

$y^2+1\geq 1$ với mọi $y$

$\Rightarrow (y^2+1)^2\geq 1$

$|x+1|+|x+2|=|x+1|+|-x-2|\geq |x+1+(-x-2)|=1$

$\Rightarrow C\leq 5-1-1=3$

Vậy $C_{\max}=3$.

d.

$(x-1)^2\geq 0$

$\Rightarrow (x-1)^2+3\geq 3$

$\Rightarrow \sqrt{(x-1)^2+3}\geq \sqrt{3}$

$(\sqrt{y+3}-1)^2\geq 0$

$\Rightarrow D\leq 9-\sqrt{3}-0=9-\sqrt{3}$

Vậy $D_{\max}=9-\sqrt{3}$. Giá trị này đạt tại $(x-1)^2=\sqrt{y+3}-1=0$

$\Leftrightarrow x=1; y=-2$

18 tháng 6 2018

thiếu đề :v

18 tháng 6 2018

bài này là tìm nghiệm nha p

10 tháng 7 2017

1. Tìm n, biết:

a) \(\dfrac{-32}{\left(-2\right)^n}=4\)

\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)

\(\Rightarrow\left(-2\right)^n.\left(-2\right)^2=\left(-2\right)^5\)

(-2)n + 2 = (-2)5

n + 2 = 5

n = 5 - 2

n = 3.

b) \(\dfrac{8}{2^n}=2\)

\(\Rightarrow\dfrac{2^3}{2^n}=2\)

\(\Rightarrow\) 2n . 2 = 23

n + 1 = 3

n = 3 - 1

n = 2.

c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)

2n - 1 = 3

2n = 3 + 1

2n = 4

n = 4 : 2

n = 2.

2. Tính:

a) \(\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{4}\right)^2\)

\(=\left(\dfrac{1}{2}\right)^3.\left[\left(\dfrac{1}{2}\right)^2\right]^2\)

\(=\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{2}\right)^4\)

\(=\left(\dfrac{1}{2}\right)^7\)

\(=\dfrac{1}{128}\)

b) 273 : 93

= (33)3 : (32)3

= 39 : 36

= 33

= 27

c) 1252 : 253

= (53)2 : (52)3

= 56 : 56

= 1

d) \(\dfrac{27^2.8^5}{6^6.32^3}\)

\(=\dfrac{\left(3^3\right)^2.\left(2^3\right)^5}{6^6.\left(2^5\right)^3}\)

\(=\dfrac{3^6.2^{15}}{6^6.2^{15}}\)

\(=\dfrac{3^6}{6^6}\)

\(=\dfrac{1}{64}.\)

10 tháng 7 2017

B2 :

b) 27\(^3\): 9\(^3\)= (27:9)\(^3\)= 3\(^3\)

c) 125\(^2\): 25\(^3\)= 15625 : 15625 = 1

5 tháng 4 2018

A= 15x\(^3\)y\(^2\).\((\dfrac{-2}{3}xy^2)\)

= -10x\(^4\)y\(^4\)

bậc đơn thức A là 4

B=2x\(^5\)y\(^2\).\(3^2x^3y^3\)

=18\(x^8y^5\)

bậc của đơn thức B là 8

C=5xy\(^2\).\(\dfrac{4}{15}xy^3z\)

= \(\dfrac{4}{3}x^2y^5z\)

Bậc của đơn thức C là 5

25 tháng 11 2016

|2x-1|=x+3

=> 2x-1=x+3 hoặc 2x-1=-(x+3)

2x-x=1+4 2x-1=-x-3

x=5 2x+x= 1-3

3x=-2

x=\(\frac{-2}{3}\)

27 tháng 11 2016

|4x+7|=2x+5

=> 4x+7=2x+5

4x-2x=5-7

-2x=-2

x=1

=>4x+7=-(2x+5)

4x+7=-2x-5

4x+2x=-5-7

6x=-12

x=-2

12 tháng 3 2019

2.a.\(A=6x^2y-\frac{2}{3}x^2y-\frac{4}{3}x^2y=4x^2y\)

b. Thay x=-2; y=\(\frac{1}{8}\):

\(A=4\left(-2\right)^2.\frac{1}{8}=2\)

26 tháng 7 2017

\(a,-x^4\left(yx\right)^2\left(-x\right)^2\left(-y\right)^3=x^8y^5\)

\(\dfrac{1}{2}ax^3\left(-xy\right)\left(-y\right)^2=\dfrac{1}{2}ax^4y^2\)

\(-\dfrac{4}{5}y\left(\dfrac{3}{2}x^2y\right)^4=-\dfrac{81}{20}x^8y^5\)

26 tháng 7 2017

b, \(\dfrac{1}{2}ax^3\left(-xy\right)\left(-y\right)^2\)

\(=-\dfrac{a}{2}x^4y^3\)

c, \(-\dfrac{4}{5}y\left(\dfrac{3}{2}x^2y\right)^4\)

\(=-\dfrac{4}{5}y.\dfrac{81}{16}x^8y^4=-\dfrac{81}{20}x^8y^5\)

Chúc bạn học tốt!!!

9 tháng 1 2018

a) \(A=5-3.\left(3x-1\right)^2=-\left[3\left(3x-1\right)^2-5\right]\)

Ta có: \(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow3.\left(3x-1\right)^2\ge0\)

\(\Rightarrow3\left(3x-1\right)^2-5\ge-5\forall x\)

\(\Rightarrow-\left[3\left(3x-1\right)^2-5\right]\ge5\forall x\)

Vậy \(MinA=5\Leftrightarrow x=\dfrac{1}{3}\)