Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm n, biết:
a) \(\dfrac{-32}{\left(-2\right)^n}=4\)
\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)
\(\Rightarrow\left(-2\right)^n.\left(-2\right)^2=\left(-2\right)^5\)
(-2)n + 2 = (-2)5
n + 2 = 5
n = 5 - 2
n = 3.
b) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow\dfrac{2^3}{2^n}=2\)
\(\Rightarrow\) 2n . 2 = 23
n + 1 = 3
n = 3 - 1
n = 2.
c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)
2n - 1 = 3
2n = 3 + 1
2n = 4
n = 4 : 2
n = 2.
2. Tính:
a) \(\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{4}\right)^2\)
\(=\left(\dfrac{1}{2}\right)^3.\left[\left(\dfrac{1}{2}\right)^2\right]^2\)
\(=\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{2}\right)^4\)
\(=\left(\dfrac{1}{2}\right)^7\)
\(=\dfrac{1}{128}\)
b) 273 : 93
= (33)3 : (32)3
= 39 : 36
= 33
= 27
c) 1252 : 253
= (53)2 : (52)3
= 56 : 56
= 1
d) \(\dfrac{27^2.8^5}{6^6.32^3}\)
\(=\dfrac{\left(3^3\right)^2.\left(2^3\right)^5}{6^6.\left(2^5\right)^3}\)
\(=\dfrac{3^6.2^{15}}{6^6.2^{15}}\)
\(=\dfrac{3^6}{6^6}\)
\(=\dfrac{1}{64}.\)
B2 :
b) 27\(^3\): 9\(^3\)= (27:9)\(^3\)= 3\(^3\)
c) 125\(^2\): 25\(^3\)= 15625 : 15625 = 1
A= 15x\(^3\)y\(^2\).\((\dfrac{-2}{3}xy^2)\)
= -10x\(^4\)y\(^4\)
bậc đơn thức A là 4
B=2x\(^5\)y\(^2\).\(3^2x^3y^3\)
=18\(x^8y^5\)
bậc của đơn thức B là 8
C=5xy\(^2\).\(\dfrac{4}{15}xy^3z\)
= \(\dfrac{4}{3}x^2y^5z\)
Bậc của đơn thức C là 5
|2x-1|=x+3
=> 2x-1=x+3 hoặc 2x-1=-(x+3)
2x-x=1+4 2x-1=-x-3
x=5 2x+x= 1-3
3x=-2
x=\(\frac{-2}{3}\)
|4x+7|=2x+5
=> 4x+7=2x+5
4x-2x=5-7
-2x=-2
x=1
=>4x+7=-(2x+5)
4x+7=-2x-5
4x+2x=-5-7
6x=-12
x=-2
\(a,-x^4\left(yx\right)^2\left(-x\right)^2\left(-y\right)^3=x^8y^5\)
\(\dfrac{1}{2}ax^3\left(-xy\right)\left(-y\right)^2=\dfrac{1}{2}ax^4y^2\)
\(-\dfrac{4}{5}y\left(\dfrac{3}{2}x^2y\right)^4=-\dfrac{81}{20}x^8y^5\)
a) \(A=5-3.\left(3x-1\right)^2=-\left[3\left(3x-1\right)^2-5\right]\)
Ta có: \(\left(3x-1\right)^2\ge0\forall x\)
\(\Rightarrow3.\left(3x-1\right)^2\ge0\)
\(\Rightarrow3\left(3x-1\right)^2-5\ge-5\forall x\)
\(\Rightarrow-\left[3\left(3x-1\right)^2-5\right]\ge5\forall x\)
Vậy \(MinA=5\Leftrightarrow x=\dfrac{1}{3}\)
Lời giải:
a.
$A=6-2x^2-4x=6-2(x^2+2x)=8-2(x^2+2x+1)=8-2(x+1)^2$
Vì $(x+1)^2\geq 0$ với mọi $x$
$\Rightarrow A\leq 8-2.0=8$
Vậy GTLN của $A$ là $8$. Giá trị này đạt tại $x+1=0\Leftrightarrow x=-1$
b.
$B=4-4x^2-x=4-(4x^2+x)=\frac{65}{16}-(4x^2+x+\frac{1}{4^2})=\frac{65}{16}-(2x+\frac{1}{4})^2\leq \frac{65}{16}$
Vậy $B_{\max}=\frac{65}{16}$. Giá trị này đạt tại $2x+\frac{1}{4}=0$
$\Leftrightarrow x=\frac{-1}{8}$
c.
$y^2+1\geq 1$ với mọi $y$
$\Rightarrow (y^2+1)^2\geq 1$
$|x+1|+|x+2|=|x+1|+|-x-2|\geq |x+1+(-x-2)|=1$
$\Rightarrow C\leq 5-1-1=3$
Vậy $C_{\max}=3$.
d.
$(x-1)^2\geq 0$
$\Rightarrow (x-1)^2+3\geq 3$
$\Rightarrow \sqrt{(x-1)^2+3}\geq \sqrt{3}$
$(\sqrt{y+3}-1)^2\geq 0$
$\Rightarrow D\leq 9-\sqrt{3}-0=9-\sqrt{3}$
Vậy $D_{\max}=9-\sqrt{3}$. Giá trị này đạt tại $(x-1)^2=\sqrt{y+3}-1=0$
$\Leftrightarrow x=1; y=-2$