Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
\(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}=\frac{1}{2\sqrt{2}}\left(7x^2-x+4\right)\)
\(\Leftrightarrow2\sqrt{2}\left(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}\right)=7x^2-x+4\)
\(\Leftrightarrow\left[\left(3x^2-1\right)-2\sqrt{2}\sqrt{3x^2-1}+2\right]+\left[\left(x^2-x\right)-2\sqrt{2}\sqrt{x^2-x}+2\right]+\left[2x^2+2\sqrt{2}x\sqrt{x^2+1}+\left(x^2+1\right)\right]=0\)
\(\Leftrightarrow\left(\sqrt{3x^2-1}-\sqrt{2}\right)^2+\left(\sqrt{x^2-x}-\sqrt{2}\right)^2+\left(\sqrt{x^2+1}+\sqrt{2}x\right)^2=0\)
Làm nốt
a) \(x+1=\sqrt{2\left(x+1\right)+2\sqrt{2\left(x+1\right)+2\sqrt{4\left(x+1\right)}}}\)
<=> \(\left(x+1\right)^2=\left[\sqrt{2\left(x+1\right)+2\sqrt{2\left(x+1\right)+2\sqrt{4\left(x+1\right)}}}\right]^2\)
<=> \(x^2+2x+1=2x+2+2\sqrt{2x+2+4\sqrt{x+1}}\)
<=> \(x^2+1=2x+2+2\sqrt{2x+2+4\sqrt{x+1}}-2x\)
<=> \(x^2+1=2\sqrt{2x+2+4\sqrt{x+1}}+2\)
<=> \(x^2+1-2=2\sqrt{2x+2+4\sqrt{x+1}}\)
<=> \(x^2-1=2\sqrt{2x+2+4\sqrt{x+1}}\)
<=> \(\left(x^2-1\right)^2=\left(2\sqrt{2x+2+4\sqrt{x+1}}\right)^2\)
<=> \(x^4-2x^2+1=8x+8+16\sqrt{x+1}\)
<=> \(x^4-2x^2+1-8x=16\sqrt{x+1}+8\)
<=> \(x^4-2x^2-8x-7=16\sqrt{x+1}\)
<=> \(\left(x^4-2x^2-8x-7\right)^2=\left(16\sqrt{x+1}\right)^2\)
<=> \(x^8-4x^6-16x^5-10x^4+32x^3+92x^2+112x+49=256x+256\)
<=> \(x^8-4x^6-16x^5-10x^4+32x^3+92x^2+112x-144x-207=0\)
<=> \(\left(x+1\right)\left(x-2\right)\left(x^6+2x^5+3x^4-4x^3-9x^2+2x+69\right)=0\)
<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vì: \(x^6+2x^5+3x^4-4x^3-9x^2+2x+69\ne0\)
=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
\(PT\Leftrightarrow7x^2-x+4-2\sqrt{2\left(3x^2-1\right)}-2\sqrt{2\left(x^2-x\right)}+2x\sqrt{2\left(x^2+1\right)}=0\)
\(\Leftrightarrow\left(3x^2-1-2\sqrt{2\left(3x^2-1\right)}+2\right)+\left(x^2-x-2\sqrt{2\left(x^2-x\right)}+2\right)+\left(2x^2+2x\sqrt{2\left(x^2+1\right)}+x^2+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{3x^2-1}-\sqrt{2}\right)^2+\left(\sqrt{x^2-x}-\sqrt{2}\right)^2+\left(\sqrt{2}x+\sqrt{x^2+1}\right)^2=0\)
Dấu = xảy ra khi x = - 1
\(Q=\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
\(=\frac{\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x^2-4x+4}}.\frac{x}{x-1}\)
\(=\frac{\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}}{\sqrt{\left(x-2\right)^2}}.\frac{x}{x-1}\)
\(=\frac{\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}\)
Nếu \(x\ge2\) thì
\(Q=\frac{\sqrt{x-1}-1+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}=\frac{2x\sqrt{x-1}}{\left(x-2\right)\left(x-1\right)}=\frac{2x}{\left(x-2\right)\left(\sqrt{x-1}\right)}\)
Nếu \(x< 2\) thì \(Q=\frac{1-\sqrt{x-1}+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}=\frac{2x}{\left(x-2\right)\left(x-1\right)}\)
Cảm ơn bạn nhiều nhưng mình thấy \(1-\frac{1}{x-1}=\frac{x-2}{x-1}\) mà bạn sao lại bằng \(\frac{x}{x-1}\)được
Điều kiện xác định \(0\le x\le1.\)
Đặt \(t=\sqrt{x}+\sqrt{1-x},s=\sqrt[4]{x}+\sqrt[4]{1-x}\) , theo bất đẳng thức Cô-Si (hoặc dùng luôn Bunhia)
\(t^2=\left(\sqrt{x}+\sqrt{1-x}\right)^2=1+2\sqrt{x\left(1-x\right)}\le1+x+1-x=2\to t\le\sqrt{2}=\frac{2}{\sqrt{2}}\).
\(s^2=t+2\sqrt[4]{x\left(1-x\right)}\le t+\sqrt[]{x}+\sqrt{1-x}=2t\le2\sqrt{2}\to s\le\frac{2}{\sqrt[4]{2}}\)
Vậy vế trái của phương trình bằng \(VT=s+t\le\frac{2}{\sqrt{2}}+\frac{2}{\sqrt[4]{2}}=2\left(\sqrt{\frac{1}{2}}+\sqrt[4]{\frac{1}{2}}\right)=VP\), nên các dấu bằng phải xảy ra. Vậy các dấu bằng phải xảy ra nên \(\sqrt{x}=\sqrt{1-x}\leftrightarrow x=\frac{1}{2}.\)