Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, Ap dung cong thuc sau
Dien h tam giac deu canh a = \(\frac{a^2\sqrt{3}}{4}\) (bn tu chung minh )
sau do tinh canh tam giac ABC theo R se duoc \(AB=\frac{\sqrt{3}}{2}R\) thay vao cong thuc tren la ra
d, ban tu ve hinh nha
Ta co tu giac CHMF,MHIB noi tiep
nen suy ra \(\widehat{CHF}=\widehat{CMF},\widehat{BHI}=\widehat{BMI}\) (1)
ma \(\widehat{MCF}=\widehat{MBI}\) (tu giac ABMC noi tiep)
=> \(\widehat{CMF}=\widehat{BMI}\) phu 2 goc bang nhau (2)
tu (1),(2) => \(\widehat{CHF}=\widehat{BHI}\) => H,I,F thang hang
\(b,\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4\left(x+y\right)^2\left(x-y\right)-5\left(x-y\right)^2\left(x+y\right)=0\\40\left(x-y\right)+40\left(x+y\right)-9\left(x-y\right)\left(x+y\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x^2-y^2\right)\left[4\left(x+y\right)-5\left(x-y\right)\right]=0\\80x-9\left(x^2-y^2\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x+y\right)\left(x-y\right)\left(9y-x\right)=0\\9\left(\frac{80}{9}x-x^2+y^2\right)=0\end{cases}}\)
\(\Rightarrow.......\)
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
\(\hept{\begin{cases}x+y=4\left(1\right)\\2x+3y=m\left(2\right)\end{cases}}\)
từ \(\left(1\right)\)ta có: \(x=4-y\)\(\left(3\right)\)
thay \(\left(3\right)\) vào \(\left(2\right)\)ta được
\(2.\left(4-y\right)+3y=m\)
\(8-2y+3y=m\)
\(8+y=m\)
\(y=m-8\) \(\left(4\right)\)
hệ phương trình có nghiệm duy nhất khi pt \(\left(4\right)\) có nghiệm duy nhất
ta thấy pt (4) luôn có nghiệm duy nhất với \(\forall y\in R\)
vậy \(\forall y\in R\)thì hệ pt đã cho có nghiệm \(\left(x;y\right)=\left(4-y;m-8\right)\)
theo bài ra \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4-y>0\\m-8< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}y>4\\m< 8\end{cases}}\)
vậy \(m< 8\) là tập hợp các giá trị cần tìm
Ta có :
\(\hept{\begin{cases}x+y=4\\2x+3y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=4\\x+x+y+y+y=m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\4+4+y=m\end{cases}\Leftrightarrow\hept{\begin{cases}y=4-x\\8+4-x=m\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=4-12+m\\x=12-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=m-8\\x=12-m\end{cases}}\)
\(\Leftrightarrow\)\(x+y=m-8+12-m=4\)
\(\Leftrightarrow\hept{\begin{cases}y=4-8\\x=12-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=-4\\x=8\end{cases}}}\)
Thoả mãn \(x>0;y< 0\)
Vậy \(x=8\) và \(y=-4\)