K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10 2024

Lời giải:

Áp dụng định lý Viet:

$x_1+x_2=\frac{-4}{2}=-2$

$x_1x_2=\frac{-1}{2}$

Khi đó:

$A=x_1x_2^3+x_1^3x_2=x_1x_2(x_1^2+x_2^2)$

$=x_1x_2[(x_1+x_2)^2-2x_1x_2]$

$=\frac{-1}{2}[(-2)^2-2.\frac{-1}{2}]=\frac{-5}{2}$

8 tháng 6 2015

\(\Delta'=\left(m+1\right)2-\left(m-4\right)=m^2+m+5=\left(m+\frac{1}{2}\right)^2+\frac{19}{4}>0\)voi moi m \(\Rightarrow\) pt co 2 ngiem phan biet.

theo he thuc vi-et ta co:\(x_1+x_2=\frac{-b}{a}=2\left(m+1\right);x_1.x_2=\frac{c}{a}=4-m\)

ma M=\(x_1\left(1-x_2\right)+x_2\left(1-x_1\right)=\left(x_1+x_2\right)-2\left(x_1x_2\right)\)

\(=2\left(m+1\right)-2\left(m-4\right)=10\)khong phu thuoc m

26 tháng 7 2019

\(x^2+\left(m-2\right)x-8=0\)

\(\Delta=b^2-4ac=\left(m-2\right)^2-4.1.\left(-8\right)=\left(m-2\right)^2+32\)

Vì \(\left(m-2\right)^2\ge0\forall m\)

\(\Rightarrow\left(m-2\right)^2+32\ge32>0\forall m\)

Vậy phương trình luôn có hai nghiệm phân biệt với mọi m

Theo định lí vi-ét ta có:\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=2-m\\x_1x_2=\frac{c}{a}=-8\end{cases}}\Rightarrow x_2=\frac{-8}{x_1}\)

Theo bài ra ta có:\(A=\left(x_1^2-1\right)\left(x_2^2-4\right)=\left(x_1^2-1\right)\left(\frac{64}{x_1^2}-4\right)=68-4\left(x_1^2+\frac{16}{x_1^2}\right)\le68-4.8=36\)

Dấu "=" xảy ra <=> \(x_1=\pm2\)

+Với  \(x_1=2\Rightarrow m=4\)

+Với \(x_1=-2\Rightarrow m=0\)

Vậy \(A=\left(x_1^2-1\right)\left(x_2^2-4\right)\)đạt GTLN là 36 \(\Leftrightarrow m=0;m=4\)

1 tháng 5 2018

a) Để phương trình có nghiệm kép thì \(\Delta=0\)

<=> \(m^2-4=0\)

<=> \(\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)

+) Với m = 2 thì phương trình có nghiệm kép là   (-1)

+) Với m = -2 thì phương trình có nghiệm kép là  (1)

b) Có : \(\Delta=b^2-4ac=9-4.2.\left(-5\right)=49>0\)

Suy ra phương trình có 2 nghiệm phân biệt (x1;x2) là (5/2;-1) 

14 tháng 5 2021

a, Đặt \(x^2=t\left(t\ge0\right)\)

Khi đó \(PT< =>t^1+4t-5=0\)

\(< =>t^2-1+4t-4=0\)

\(< =>\left(t-1\right)\left(t+1\right)+4\left(t-1\right)=0\)

\(< =>\left(t-1\right)\left(t+5\right)=0\)

\(< =>\orbr{\begin{cases}t=1\left(tm\right)\\t=-5\left(loai\right)\end{cases}}\)

\(< =>x^2=1< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

Vậy ...

14 tháng 5 2021

Thay m = 2 vào , ta có :

\(PT< =>x^2-2\left(2+1\right)x+2^2+3.2-4=0\)

\(< =>x^2-6x+6=0\)

\(< =>\left(x^2-6x+9\right)-\sqrt{3}^2=0\)

\(< =>\left(x-3-\sqrt{3}\right)\left(x-3+\sqrt{3}\right)=0\)

\(< =>\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)