K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 3 2020

\(x^3y^2-x^2y^2-2x^2y+2xy+3x-3=0\)

\(\Leftrightarrow x^2y^2\left(x-1\right)-2xy\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2y^2-2xy+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(xy-1\right)^2+2=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow y^2-y-3m+1=0\) (1)

\(\Delta=1-4\left(-3m+1\right)=12m-3>0\Rightarrow m>\frac{1}{4}\)

Gọi \(y_1;y_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=1\\y_1y_2=-3m+1\end{matrix}\right.\)

\(\left(1+y_2\right)\left(1+y_1\right)+3=0\)

\(\Leftrightarrow y_1y_2+y_1+y_2+4=0\)

\(\Leftrightarrow-3m+1+5=0\) \(\Rightarrow m=2\)

9 tháng 3 2020

Cám ơn nha

NV
24 tháng 10 2019

a/ ĐKXĐ: ...

\(3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2x^2-3x+10\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{x^2-2x+4}=b>0\end{matrix}\right.\) \(\Rightarrow2a^2+b^2=2x^2-3x+10\)

Phương trình trở thành:

\(3ab=2a^2+b^2\)

\(\Leftrightarrow2a^2-3ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\Rightarrow\left[{}\begin{matrix}a=b\\b=2a\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+2}=\sqrt{x^2-2x+4}\\\sqrt{x+2}=2\sqrt{x^2-2x+4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=x^2-2x+4\\x+2=4x^2-8x+16\end{matrix}\right.\)

2/ \(\Leftrightarrow\left\{{}\begin{matrix}x^2+1+y^2+xy-4y=0\\\left(x^2+1\right)\left(x+y-2\right)=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1+y\left(x+y-4\right)=0\\\left(x^2+1\right)\left(x+y-2\right)=y\end{matrix}\right.\)

Nhận thấy \(y=0\) không phải nghiệm, hệ tương đương:

\(\left\{{}\begin{matrix}\frac{x^2+1}{y}+x+y-2=2\\\left(\frac{x^2+1}{y}\right)\left(x+y-2\right)=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\frac{x^2+1}{y}=a\\x+y-2=b\end{matrix}\right.\)

Theo Viet đảo, a và b là nghiệm của: \(t^2-2t+1=0\Rightarrow t=1\)

\(\Rightarrow a=b=1\Rightarrow\left\{{}\begin{matrix}\frac{x^2+1}{y}=1\\x+y-2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1=y\\x-3=-y\end{matrix}\right.\) \(\Rightarrow x^2+x-2=0\)

NV
24 tháng 10 2019

Phương trình hoành độ giao điểm:

\(x^2-x+m=0\)

\(\Delta=1-4m>0\Rightarrow m< \frac{1}{4}\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m\end{matrix}\right.\)

\(\left(x_2-x_1\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=1-4m\Rightarrow\left(x_2-x_1\right)^4=\left(1-4m\right)^2\)

\(y_2-y_1=x_2-m-\left(x_1-m\right)=x_2-x_1\)

\(\Rightarrow\left(y_2-y_1\right)^4=\left(x_2-x_1\right)^4=\left(1-4m\right)^2\)

Thay vào bài toán:

\(2\left(1-4m\right)^2=18\)

\(\Rightarrow\left(1-4m\right)^2=9\)

Nhớ chỉ lấy nghiệm \(m< \frac{1}{4}\)

21 tháng 4 2018
https://i.imgur.com/0mWaEdv.jpg
21 tháng 4 2018

Hình như bn chưa giải xong thì phải

30 tháng 3 2019

3.

30 tháng 3 2019

ấn nhầm =)

Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

NV
3 tháng 3 2020

a.

\(\Leftrightarrow\left\{{}\begin{matrix}4xy+8x-6y-12=4xy-12x+54\\3xy-3x+3y-3=3xy+3y-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}20x-6y=66\\-3x=-9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}y=1-x\\x^2+xy+3=0\end{matrix}\right.\)

\(\Leftrightarrow x^2+x\left(1-x\right)+3=0\)

\(\Leftrightarrow x+3=0\Rightarrow x=-3\Rightarrow y=4\)

NV
3 tháng 3 2020

c.

\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{2x-5}{3}\\x^2-y^2=40\end{matrix}\right.\)

\(\Rightarrow x^2-\left(\frac{2x-5}{3}\right)^2-40=0\)

\(\Leftrightarrow9x^2-\left(4x^2-20x+25\right)-360=0\)

\(\Leftrightarrow5x^2+20x-385=0\)

\(\Rightarrow\left[{}\begin{matrix}x=7\Rightarrow y=3\\x=-11\Rightarrow y=-9\end{matrix}\right.\)

d.

\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{36-3x}{2}\\\left(x-2\right)\left(y-3\right)=18\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)\left(\frac{36-3x}{2}-3\right)=18\)

\(\Leftrightarrow\left(x-2\right)\left(10-x\right)=12\)

\(\Leftrightarrow-x^2+12x-32=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=12\\x=8\Rightarrow y=6\end{matrix}\right.\)