Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài là:
Gọi n là số tạo bởi các số tự nhiên viết liên tiếp từ 16 đến 89.Tìm số tự nhiên k lớn nhất để n chia hết cho 3^k-
Cho mik hỏi tí ở chỗ 3^k- mấy?
3 \(\in\)Ư(A). với A \(\le\)89
Ư(A\(⋮\)3) = {3; 6; 9; ..;81; 84}
Số cần tìm là 84
Ta có: n = 161718192021.... 89
Tổng các chữ số hàng chục của dãy là:
(2 + 3 + 4 + 5 + 6 + 7 + 8).10 = 35.10 = 350
Tổng các chữ số hàng đơn vị của dãy là:
(0 + 1 + 2 + 3 + ... + 9).7 = 45.7 = 315.
Tổng các chữ số của n bằng 1 + 6 + 1 + 7 + 1 + 8 + 1 + 9 + 350 + 315 = 699.
Số 699 chia hết cho 3 nhưng không chia hết cho 9.
Do đó, n chia hết cho 3 nhưng không chia hết cho 9.
Vậy số tự nhiên k lớn nhất để n \(\)chia hết là 3^k = 1.
a) Tổng ba số tự nhiên liên tiếp có dạng như sau:
(1k+1 )+ (1k+ 2) + (1k + 3) = 1k6
Mà 1k6 chia hết cho 3 (6 chia hết cho 3)
Nên tổng ba số tự nhiên liên tiếp chia hết cho 3
b) Tổng bốn số tự nhiên liên tiếp có dạng:
(1k + 1 ) + (1k + 2) + (1k + 3) + (1k + 4) = 1k10
1k10 không chia hết cho 4 nên tổng bốn số tự nhiên liên tiếp ko chia hết cho 4
16)
a) (15 + 7n) chia hết cho n
Theo quy tắc thì nếu (a + b) chia hết cho k thì a và b đều chia hết cho k
Vậy 15 chia hết cho 5 (bỏ đi 7n vì ở đây vẫn là n ẩn 0
Suy ra n thuộc U(15)
Ư(15) = { 1 ; 3 ; 5 ; 15 }
Thử lần lượt các số trên với 7n: bằng cách đem: 7n chia n
Ta có: 71 chia hết cho 1 ( 1 là n) => Chọn
73 không chia hết cho 3 (3 là n) => Bỏ chọn
75 chia hết cho 5 ..tương tự như trên.. => Chọn
7(15) vượt quá số có 2 chữ số => Bỏ chọn
Vậy n được là: 1 và 5
b) Tương tự như trên
17) 66a + 55b = 111 011?
Nhận xét: 111 011? là số có 7 chữ số
Mà trong khi 66a + 55b đều là số có 2 chữ số => Tổng trên tối đa là 4 chữ số.
4 < 7 => Không thể tìm được số tự nhiên a và b để thỏa mãn yêu cầu trên
17
Vì 66a + 55b = 111 011
11.6a+11.5b=111011
11.(6a+5b) =111011
11*11ab=111011
mà 111011 không chia hết cho 11
==>Không thể tìm được a và b