Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Bổ đề: Tam giác $ABC$ có \(\angle A=\alpha\) thì \(S_{ABC}=\frac{AB.AC\sin \alpha}{2}\)
Chứng minh: Từ $B$ kẻ đường cao $BH$ của tam giác
Khi đó:\(S_{ABC}=\frac{BH.AC}{2}\) (1)
Mà \(\frac{BH}{AB}=\sin \alpha\) (TH góc A tù thì ta có: \(\frac{BH}{AB}=\sin (180^0-\alpha)=\sin \alpha\) ) \(\Rightarrow BH=AB.\sin \alpha\) (2)
Từ (1).(2) suy ra \(S_{ABC}=\frac{AB.AC.\sin \alpha}{2}\)
--------------------------------------------
Quay lại bài toán:
a)
\(S_{ABCD}=S_{ABC}+S_{ADC}=\frac{ab.\sin \angle ABC}{2}+\frac{cd.\sin \angle ADC}{2}\)
Vì \(\sin ABC, \sin ADC\leq 1\Rightarrow S_{ABCD}\leq \frac{ab}{2}+\frac{cd}{2}=\frac{ab+cd}{2}\)
Ta có đpcm.
b)
* Vế đầu tiên:
\(2S=S_{ABC}+S_{ADC}+S_{BAD}+S_{BCD}\)
\(=\frac{ac\sin \angle ABC}{2}+\frac{cd\sin \angle ADC}{2}+\frac{ad.\sin \angle BAD}{2}+\frac{bc\sin \angle BCD}{2}\)
\(\leq \frac{ac}{2}+\frac{cd}{2}+\frac{ad}{2}+\frac{bc}{2}=\frac{ac+cd+ad+bc}{2}\)
\(\Leftrightarrow 4S\leq ac+cd+ad+bc=(a+c)(b+d)\) (đpcm)
* Vế sau:
\(p^2=\left(\frac{a+b+c+d}{2}\right)^2=\frac{[(a+c)+(b+d)]^2}{4}\)
Áp dụng bđt AM-GM: \((a+c)+(b+d)\geq 2\sqrt{(a+c)(b+d)}\)
\(\Rightarrow 4p^2=[(a+c)+(b+d)]^2\geq 4(a+c)(b+d)\)
\(\Rightarrow p^2\geq (a+c)(b+d)\) (đpcm)
c)
Theo phần b, ta đã chứng minh được:
\(S\leq \frac{(a+c)(b+d)}{4}\) (1)
Mặt khác, áp dụng BĐT AM-GM:
\(a^2+b^2\geq 2ab\)
\(a^2+d^2\geq 2ad\)
\(b^2+c^2\geq 2bc\)
\(c^2+d^2\geq 2cd\)
Cộng theo vế: \(\Rightarrow 2(a^2+b^2+c^2+d^2)\geq 2(ab+ad+bc+cd)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\geq ab+ad+bc+cd=(a+c)(b+d)\) (2)
Từ \((1);(2)\Rightarrow S\leq \frac{a^2+b^2+c^2+d^2}{4}\) (đpcm)
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân