K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cần CM:

\(\dfrac{1}{S_{ABC}}+\dfrac{1}{S_{IBC}}=\dfrac{1}{S_{MBC}}+\dfrac{1}{S_{NBC}}\)

\(\Leftrightarrow1+\dfrac{S_{ABC}}{S_{IBC}}=\dfrac{S_{ABC}}{S_{MBC}}+\dfrac{S_{ABC}}{S_{NBC}}\)

\(\Leftrightarrow1+\dfrac{S_{ABC}}{S_{IBC}}=\dfrac{AB}{MB}+\dfrac{AC}{NC}\)

mới nghĩ đc tới đây thôi để mai nghĩ nốt nhé

7 tháng 2 2022

I) Hình bạn tự vẽ nha 

Ta có DY//BH ; YH//DB 

=> DYHB hình bình hành => DY = HB 

Tương tự được ZE = FC

mà \(\frac{BH}{BC}=1-\frac{HC}{BC}=1-\frac{1}{\sqrt{2}}\)\(\left(\Delta HIC\approx\Delta BAC;\frac{AB}{IH}=\sqrt{2}\right)\)(1)

Tương tự được \(\frac{FC}{BC}=1-\frac{BF}{BC}=1-\frac{1}{\sqrt{2}}\)(2) 

Từ (1) ; (2) => BH = FC hay DY = ZE 

AH
Akai Haruma
Giáo viên
25 tháng 12 2017

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+y+z)\geq (1+1+1)^2\)

\(\Leftrightarrow \left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+y+z)\geq 9\)

\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}> \frac{4}{x+y+z}\)

Vậy BĐT đã cho được cm. Dấu bằng không xảy ra .

Tìm GTNN của: a. \(A=x-\sqrt{x}\) b. \(B=x-\sqrt{x-2005}\) c. \(C=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\) d. \(D=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\) e. \(E=\left|x-2\right|+\left|2x-3\right|+\left|4x-1\right|+\left|5x-10\right|\) f. \(F=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\) g. \(G=\sqrt{x^2+1}+\sqrt{x^2-2x+5}\) h. \(H=\sqrt{x^2-8x+17}+\sqrt{x^2+16}\) i. \(I=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\) k. \(K=x+y\) biết x và y là các số dương thỏa mãn...
Đọc tiếp

Tìm GTNN của:

a. \(A=x-\sqrt{x}\)

b. \(B=x-\sqrt{x-2005}\)

c. \(C=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)

d. \(D=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

e. \(E=\left|x-2\right|+\left|2x-3\right|+\left|4x-1\right|+\left|5x-10\right|\)

f. \(F=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)

g. \(G=\sqrt{x^2+1}+\sqrt{x^2-2x+5}\)

h. \(H=\sqrt{x^2-8x+17}+\sqrt{x^2+16}\)

i. \(I=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)

k. \(K=x+y\) biết x và y là các số dương thỏa mãn \(\dfrac{a}{x}+\dfrac{b}{y}=1\)(a và b là các hằng số dương )

l. \(L=\left(x+y\right)\left(y+z\right)\) với các số dương x,y,z và \(xyz\left(x+y+z\right)=1\)

m. \(M=x^4+y^4+z^4\) biết rằng \(xy+yz+zx=1\)

n. \(N=a^3+b^3+c^3\) biết a,b,c lớn hơn -1 và \(a^2+b^2+c^2=12\)

o. \(O=\dfrac{x}{2}+\dfrac{2}{x-1}\) với x>1

p. \(P=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x+y+z=1\)

q. \(Q=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x^2+y^2+z^2=1\)

r. \(R=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\) với a,b,c là các số dương và \(a+b+c=6\)

s. \(S=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\) với a,b,c là các số dương và \(a+b+c=1\)

t. \(T=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{d+a}\) với a,b,c,d là các số dương và \(a+b+c+d=1\)

u. \(U=\dfrac{x^2+y^2}{x-y}\) với x>y>0 và xy=1

v. \(V=\dfrac{5-3x}{\sqrt{1-x^2}}\)

w. \(W=\dfrac{1}{x}+\dfrac{1}{y}\) với x>0, y>0 và \(x^2+y^2=1\)

x. \(X=\left(1+x\right)\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\left(1+\dfrac{1}{x}\right)\) với x>0, y>0 và \(x^2+y^2=1\)

y. \(Y=\dfrac{2}{2-x}+\dfrac{1}{x}\) với 0<x<2

z. \(Z=3^x+3^y\) với x+y=4

0
KẾT QUẢ CUỘC THI TOÁN DO DƯƠNG PHAN KHÁNH DƯƠNG TỔ CHỨC . Giải nhất : Ngô Tấn Đạt . Phần thưởng : Thẻ cào 100k + 30GP Giải nhì : Hoàng Thảo Linh và Diệp Băng Dao . Phần thưởng : Thẻ cào 50k + 20GP Giải ba : Truy kích và Luân Đào . Phần thưởng : 15GP Nhờ thầy @phynit trao giải cho những bạn trên ạ . Cảm ơn các bạn dã ủng hộ cuộc thi của mình . GOOD LUCK ! ĐÁP ÁN VÒNG 3 : " CUỘC THI TOÁN...
Đọc tiếp

KẾT QUẢ CUỘC THI TOÁN DO DƯƠNG PHAN KHÁNH DƯƠNG TỔ CHỨC .

Giải nhất : Ngô Tấn Đạt . Phần thưởng : Thẻ cào 100k + 30GP

Giải nhì : Hoàng Thảo Linh và Diệp Băng Dao . Phần thưởng : Thẻ cào 50k + 20GP

Giải ba : Truy kích và Luân Đào . Phần thưởng : 15GP

Nhờ thầy @phynit trao giải cho những bạn trên ạ . Cảm ơn các bạn dã ủng hộ cuộc thi của mình . GOOD LUCK !

ĐÁP ÁN VÒNG 3 : " CUỘC THI TOÁN DO DƯƠNG PHAN KHÁNH DƯƠNG TỔ CHỨC "

Câu 1 :

a ) ĐKXĐ : \(x\ge0\) , \(x\ne25\) , \(x\ne9\)

b )

\(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\dfrac{25-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}+\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right):\left(\dfrac{25-x-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\dfrac{-5}{\sqrt{x}+5}:\left(\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\)

\(=\dfrac{-5}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}+3\right)}{\sqrt{x}+5}\)

\(=\dfrac{-5}{\sqrt{x}+5}\times\dfrac{\sqrt{x}+5}{-\left(\sqrt{x}+3\right)}\)

\(=\dfrac{5}{\sqrt{x}+3}\)

c )

Để biểu thức A nhận giá trị nguyên thì \(5\) phải chia hết cho \(\sqrt{x}+3\)

Ta có : \(Ư\left(5\right)=\left(-5;-1;1;5\right)\) . Mà \(\sqrt{x}+3\ge3\) .

\(\Rightarrow\sqrt{x}+3=5\Rightarrow\sqrt{x}=2\Rightarrow x=4\left(N\right)\)

Vậy \(x=4\) thì biểu thức A nhận giá trị nguyên .

d )

Ta có :

\(B=\dfrac{A\left(x+16\right)}{5}=\dfrac{5\left(x+16\right)}{\dfrac{\sqrt{x}+3}{5}}=\dfrac{x+16}{\sqrt{x}+3}=\dfrac{x-9+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\)

Theo BĐT Cô - Si cho hai số không âm ta có :

\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\ge2\sqrt{\sqrt{x}+3\times\dfrac{25}{\sqrt{x}+3}}=2\sqrt{25}=10\)

\(\Rightarrow\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\ge10-6=4\)

Dấu \("="\) xảy ra khi \(\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\Leftrightarrow\sqrt{x}+3=5\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

Vậy GTNN của \(B\) là 4 khi \(x=4\)

Câu 2 :

a ) \(\left(x^2-x+1\right)\left(x^2+4x+1\right)=6x^2\)

\(\Leftrightarrow x^4+4x^3+x^2-x^3-4x^2-x+x^2+4x+1-6x^2=0\)

\(\Leftrightarrow x^4+3x^3-8x^2+3x+1=0\)

Xét : 0 không phải là nghiệm của phương trình trên .

\(\Leftrightarrow x^2+3x-8+\dfrac{3}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+\left(3x+\dfrac{3}{x}\right)-8=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)-10=0\)

Đặt \(x+\dfrac{1}{x}=t\) . Phương trình trở thành :

\(t^2+3t-10=0\)

\(\Delta=9+40=49>0\)

\(\Rightarrow\left\{{}\begin{matrix}t_1=\dfrac{-3+\sqrt{49}}{2}=2\\t_2=\dfrac{-3-\sqrt{49}}{2}=-5\end{matrix}\right.\)

Với \(t_1=2\) :

\(\Leftrightarrow x+\dfrac{1}{x}=2\)

\(\Leftrightarrow\) \(\dfrac{x^2}{x}+\dfrac{1}{x}=\dfrac{2x}{x}\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

Với \(t=-5\) :

\(\Leftrightarrow x+\dfrac{1}{x}=-5\)

\(\Leftrightarrow\) \(\dfrac{x^2}{x}+\dfrac{1}{x}=\dfrac{-5x}{x}\)

\(\Leftrightarrow x^2+5x+1=0\)

\(\Delta=25-4=21>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-5+\sqrt{21}}{2}\\x_2=\dfrac{-5-\sqrt{21}}{2}\end{matrix}\right.\)

Vậy \(S=\left\{1;\dfrac{-5+\sqrt{21}}{2};\dfrac{-5-\sqrt{21}}{2}\right\}\)

b ) \(3x^2+2x=2\sqrt{x^2+x}+1-x\)

\(\Leftrightarrow3\left(x^2+x\right)-2\sqrt{x^2+x}-1=0\)

\(\Leftrightarrow3\left(x^2+x\right)-3\sqrt{x^2+x}+\sqrt{x^2+x}-1=0\)

\(\Leftrightarrow3\sqrt{x^2+x}\left(\sqrt{x^2+x}-1\right)+\left(\sqrt{x^2+x}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+x}-1\right)\left(3\sqrt{x^2+x}+1=0\right)\)

\(\) \(\Leftrightarrow\left(\sqrt{x^2+x}-1\right)=0\) . Vì \(3\sqrt{x^2+x}+1>0\)

\(\Leftrightarrow x^2+x-1=0\)

\(\Delta=1+4=5>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-1+\sqrt{5}}{2}\\x_2=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy ..............................

c )

\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\) ( ĐK : \(x\ge-1\) )

\(\Leftrightarrow\sqrt{x+3}+2x\sqrt{x+1}-2x-\sqrt{\left(x+1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\left(\sqrt{x+3}-2x\right)\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2x\\\sqrt{x}+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+3=4x^2\end{matrix}\right.\\x+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy......................

d ) \(x^2+9x+20=2\sqrt{3x+10}\) ( ĐK : \(x\ge-\dfrac{10}{3}\) )

\(\Leftrightarrow\left(x^2+6x+9\right)+\left(3x+10-2\sqrt{3x+10}+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{3x+10}-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{3x+10}=1\end{matrix}\right.\Leftrightarrow x=-3\)

Vậy...............................

Câu 3 :

a )

\(VT=\dfrac{\sqrt{\dfrac{abc+4}{a}-4\sqrt{\dfrac{bc}{a}}}}{\sqrt{abc}-2}\)

\(=\dfrac{\sqrt{\dfrac{abc+4}{a}-\dfrac{4\sqrt{abc}}{a}}}{\sqrt{abc}-2}\)

\(=\dfrac{\sqrt{\dfrac{abc+4-4\sqrt{abc}}{a}}}{\sqrt{abc}-2}\)

\(=\dfrac{\sqrt{\dfrac{\left(\sqrt{abc}-2\right)^2}{a}}}{\sqrt{abc}-2}\)

\(=\dfrac{\dfrac{\sqrt{abc}-2}{\sqrt{a}}}{\sqrt{abc}-2}=\dfrac{1}{\sqrt{a}}\left(đpcm\right)\)

b )

Nếu trong \(a+bc;b+ca;c+ab\) không có số nào lớn hơn 1 thì giá trị của mỗi số hạng củaVT ít nhất là \(\dfrac{1}{3}\)

Nếu trong \(a+bc;b+ca;c+ab\) có một số lớn hơn 1 khi đó : \(c=\dfrac{1-ab}{a+b}\)\(a+b< 1\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{2a+2bc+1}+\dfrac{1}{2b+2ca+1}\ge\dfrac{4}{2a+2b+2bc+2ca+2}=\dfrac{2}{a+b+2-ab}\)

Khi đó ta cần chứng minh :

\(\dfrac{2}{2+a+b-ab}+\dfrac{1}{2c+2ab+1}\ge1\)

Hay :\(\dfrac{2}{a+b-ab+2}+\dfrac{a+b}{a+b-2ab+2ab\left(a+b\right)+2}\ge1\)

Ta có :

\(VT=\dfrac{4+4\left(a+b\right)-4ab+3ab\left(a+b\right)+\left(a+b\right)^2}{\left(2+a+b-ab\right)\left(2+a+b-2ab+2ab\left(a+b\right)\right)}\)

Đặt \(S=a+b< 1;P=ab\) . Ta cần chứng minh :

\(\dfrac{4+4S-4P+3SP+S^2}{4S-6P+3SP+S^2+2S^2P-2P^2+2SP^2+4}\ge1\)

\(\Leftrightarrow2P\ge2S^2P-2P^2+2S^2P\)

\(\Leftrightarrow2P\left(1-S\right)\left(P+S+1\right)\ge0\) ( Đúng vì \(S< 1\) )

Dấu \("="\) xảy ra khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoàn vị .

Câu 4 :

A B C H D E

a )

Tứ giác ADHE có : \(\widehat{A}=\widehat{D}=\widehat{E}=90^0\)

\(\Rightarrow ADHE\) là hình chữ nhật .

\(\Rightarrow\widehat{AED}=\widehat{HAE}\)

Ta lại có : \(\widehat{HAE}=\widehat{ABC}\) ( Cùng phụ với góc C )

\(\Rightarrow\widehat{AED}=\widehat{ABC}\)

Xét \(\Delta AED\)\(\Delta ABC\) ta có :

\(\left\{{}\begin{matrix}\widehat{A}:Chung\\\widehat{AED}=\widehat{ABC}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AED\sim\Delta ABC\left(g-g\right)\)

b )

Ta có : \(\left\{{}\begin{matrix}S_{ADE}=\dfrac{1}{2}S_{ADHE}\\S_{ABC}=2S_{ADHE}\end{matrix}\right.\Rightarrow S_{ADE}=\dfrac{1}{4}S_{ABC}\Rightarrow\) \(\dfrac{S_{ADE}}{S_{ABC}}=\dfrac{1}{4}\)

Mặt khác : \(\Delta ADE\sim\Delta ABC\) ( Câu a )

\(\Rightarrow\) \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{DE}{BC}\right)^2=\dfrac{1}{4}\)

\(\Rightarrow\) \(\dfrac{DE}{BC}=\dfrac{1}{2}\Rightarrow DE=\dfrac{1}{2}BC\)

Gọi M là trung điểm của BC .

\(\Delta ABC\) vuông tại A . \(\Rightarrow AM=\dfrac{1}{2}BC\)

\(\Rightarrow DE=AM\)

\(AH=DE\) ( Do ADHE là hình chữ nhật )

\(\Rightarrow AM=AH\) ( Đường trung tuyến cũng là đường cao )

\(\Rightarrow\Delta ABC\) vuông cân tại A ( đpcm )

Câu 5 :

Ta có :

\(\left\{{}\begin{matrix}2011+y^2=y^2+xy+yz+zx=\left(x+y\right)\left(y+z\right)\\2011+z^2=z^2+xy+yz+zx=\left(x+z\right)\left(y+z\right)\\2011+x^2=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\end{matrix}\right.\)

\(\Rightarrow Q=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\dfrac{\left(x+y\right)\left(x+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(x+z\right)\left(y+z\right)}}\)

\(=2\left(xy+yz+zx\right)=2.2011=4022\)

13
25 tháng 6 2018

bucminh

25 tháng 6 2018

Mi kết liễu đời ta đii :v

24 tháng 6 2018

Câu 1:

\(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\\ \Leftrightarrow2\sqrt{x-a}+2\sqrt{y-b}+2\sqrt{z-c}=x+y+z\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}=0\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}+3-a-b-c=0\\ \Leftrightarrow\left[\left(x-a\right)-2\sqrt{x-a}+1\right]+\left[\left(y-b\right)-2\sqrt{y-b}+1\right]+\left[\left(z-c\right)-2\sqrt{z-c}+1\right]=0\\ \Leftrightarrow\left(\sqrt{x-a}-1\right)^2+\left(\sqrt{y-b}-1\right)^2+\left(\sqrt{z-c}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}-1=0\\\sqrt{y-b}-1=0\\\sqrt{z-c}-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}=1\\\sqrt{y-b}=1\\\sqrt{z-c}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-a=1\\y-b=1\\z-c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=a+1\\y=b+1\\z=c+1\end{matrix}\right.\)Vậy \(\left\{x;y;z\right\}=\left\{a+1;b+1;c+1\right\}\)

24 tháng 6 2018

Câu 2:

\(\text{ a) Ta có }:\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}< \dfrac{2}{\sqrt{n-1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\\ =\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\left(1\right)\)

\(\text{Lại có: }\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\\ =\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow2\left(\sqrt{n+1}-n\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

b) Áp dụng bất đảng thức ở câu a:

\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\\ >2\left(\sqrt{101}-\sqrt{100}\right)+...+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{100}+...+\sqrt{4}-\sqrt{3}+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{1}\right)>2\left(\sqrt{100}-1\right)=2\left(10-1\right)=18\left(3\right)\)

\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 2\left(\sqrt{100}-\sqrt{99}\right)+...+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{1}-\sqrt{0}\right)\\ =2\left(\sqrt{100}-\sqrt{99}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\sqrt{1}\right)\\ =2\cdot\sqrt{100}=2\cdot10=20\left(4\right)\)

Từ \(\left(3\right)\)\(\left(4\right)\Rightarrow18< S< 20\)

23 tháng 8 2018

Ta có \(\left(x+y+z\right)^2-x^2-y^2-z^2=a^2-b\Rightarrow2\left(xy+yz+zx\right)=2048\Rightarrow xy+yz+zx=2014\)

với xy+yz+zx=2014, thay vào, ta có A=\(\sum x\sqrt{\dfrac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}=\sum x\sqrt{\dfrac{\left(y+z\right)^2\left(y+x\right)\left(z+x\right)}{\left(x+z\right)\left(x+y\right)}}=\sum x\left(y+z\right)=2\left(xy+yz+zx\right)=2048\)

8 tháng 8 2017

1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^2-xy+y^2\) (do x+y=1)

\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)

Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)

Vậy \(x^3+y^3\ge\dfrac{1}{4}\)

8 tháng 8 2017

2.

a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))

Đẳng thức xảy ra \(\Leftrightarrow a=b\)

b) Lần trước mk giải rồi nhá

3.

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)

b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)

\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)

18 tháng 8 2018

\(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)=8\)

=>\(8xyz=xyz+\sum x+\sum xy+1\)

=>\(\sum x^2+14xyz=\left(\sum x\right)^2+2\sum x+2\)

mặt khác

\(8=\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)\ge\dfrac{8}{\sqrt[3]{xyz}}\rightarrow xyz\ge1\)

đặt \(\sum x=a\left(a\ge3\right)\)

khi đó \(P=\dfrac{a^2+2a+2}{4a^2+15xyz}\le\dfrac{a^2+2a+2}{4a^2+15}\)

\(\dfrac{a^2+2a+2}{4a^2+15}=\dfrac{1}{3}-\dfrac{\left(a-3\right)^2}{12a^2+45}\le\dfrac{1}{3}\)

vậy max bằng 1/3 khi x=y=z=1

18 tháng 8 2018

@Lightning Farron @Akai Haruma @Vũ Tiền Châu

14 tháng 7 2018

Bài 1 :

Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)

Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)