Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I) Hình bạn tự vẽ nha
Ta có DY//BH ; YH//DB
=> DYHB hình bình hành => DY = HB
Tương tự được ZE = FC
mà \(\frac{BH}{BC}=1-\frac{HC}{BC}=1-\frac{1}{\sqrt{2}}\)\(\left(\Delta HIC\approx\Delta BAC;\frac{AB}{IH}=\sqrt{2}\right)\)(1)
Tương tự được \(\frac{FC}{BC}=1-\frac{BF}{BC}=1-\frac{1}{\sqrt{2}}\)(2)
Từ (1) ; (2) => BH = FC hay DY = ZE
Lời giải:
Ta thấy: \(xy+yz+xz=1\)
\(\Rightarrow \left\{\begin{matrix} 1+y^2=xy+yz+xz+y^2=(y+z)(y+x)\\ 1+x^2=xy+yz+xz+x^2=(x+y)(x+z)\\ 1+z^2=xy+yz+xz+z^2=(z+x)(z+y)\end{matrix}\right.\)
Do đó:
\(x\sqrt{\frac{(y^2+1)(z^2+1)}{1+x^2}}=x\sqrt{\frac{(y+x)(y+z)(z+x)(z+y)}{(x+y)(x+z)}}=x\sqrt{(y+z)^2}=x(y+z)\)
Hoàn toàn tt:
\(y\sqrt{\frac{(x^2+1)(z^2+1)}{y^2+1}}=y(x+z)\)
\(z\sqrt{\frac{(x^2+1)(y^2+1)}{z^2+1}}=z(x+y)\)
Cộng theo vế:
\(S=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2\)
Lời giải:
Ta thấy: xy+yz+xz=1
⇒⎧⎪⎨⎪⎩1+y2=xy+yz+xz+y2=(y+z)(y+x)1+x2=xy+yz+xz+x2=(x+y)(x+z)1+z2=xy+yz+xz+z2=(z+x)(z+y)
Do đó:
x√(y2+1)(z2+1)1+x2=x√(y+x)(y+z)(z+x)(z+y)(x+y)(x+z)=x√(y+z)2=x(y+z)
Hoàn toàn tt:
y√(x2+1)(z2+1)y2+1=y(x+z)
z√(x2+1)(y2+1)z2+1=z(x+y)
Cộng theo vế:
S=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2
Câu 1:
\(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\\ \Leftrightarrow2\sqrt{x-a}+2\sqrt{y-b}+2\sqrt{z-c}=x+y+z\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}=0\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}+3-a-b-c=0\\ \Leftrightarrow\left[\left(x-a\right)-2\sqrt{x-a}+1\right]+\left[\left(y-b\right)-2\sqrt{y-b}+1\right]+\left[\left(z-c\right)-2\sqrt{z-c}+1\right]=0\\ \Leftrightarrow\left(\sqrt{x-a}-1\right)^2+\left(\sqrt{y-b}-1\right)^2+\left(\sqrt{z-c}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}-1=0\\\sqrt{y-b}-1=0\\\sqrt{z-c}-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}=1\\\sqrt{y-b}=1\\\sqrt{z-c}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-a=1\\y-b=1\\z-c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=a+1\\y=b+1\\z=c+1\end{matrix}\right.\)Vậy \(\left\{x;y;z\right\}=\left\{a+1;b+1;c+1\right\}\)
Câu 2:
\(\text{ a) Ta có }:\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}< \dfrac{2}{\sqrt{n-1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\\ =\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\left(1\right)\)
\(\text{Lại có: }\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\\ =\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow2\left(\sqrt{n+1}-n\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
b) Áp dụng bất đảng thức ở câu a:
\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\\ >2\left(\sqrt{101}-\sqrt{100}\right)+...+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{100}+...+\sqrt{4}-\sqrt{3}+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{1}\right)>2\left(\sqrt{100}-1\right)=2\left(10-1\right)=18\left(3\right)\)
\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 2\left(\sqrt{100}-\sqrt{99}\right)+...+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{1}-\sqrt{0}\right)\\ =2\left(\sqrt{100}-\sqrt{99}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\sqrt{1}\right)\\ =2\cdot\sqrt{100}=2\cdot10=20\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\Rightarrow18< S< 20\)
\(VT=\dfrac{\left(\dfrac{1}{z}\right)^2}{\dfrac{1}{x}+\dfrac{1}{y}}+\dfrac{\left(\dfrac{1}{x}\right)^2}{\dfrac{1}{y}+\dfrac{1}{z}}+\dfrac{\left(\dfrac{1}{y}\right)^2}{\dfrac{1}{x}+\dfrac{1}{z}}\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Dâu "=" xảy ra khi \(x=y=z\)
1 + y2 = xy + yz + xz + y2 = (x + y)(y + z)
1 + z2 = xy + yz + xz + z2 = (x + z)(z + y)
1 + x2 = xy + yz + xz + x2 = (y + x)(x + z)
Sau khi thay vào và rút gọn ta được
S = x(y + z) + y(x + z) + z(x + y)
S = 2(xy + yz + xz) = 2.1 = 2
Sửa đề \(\dfrac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x^2z^2}+1}+\dfrac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y}+1}+\dfrac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x^2z^2}+1}=\dfrac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x\cdot z\cdot xz}+1}\ge\dfrac{\left(x+1\right)\left(y+1\right)^2}{x+z+xz+1}\)
\(=\dfrac{\left(x+1\right)\left(y+1\right)^2}{\left(x+1\right)\left(z+1\right)}=\dfrac{\left(y+1\right)^2}{z+1}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y^2}+1}\ge\dfrac{\left(z+1\right)^2}{x+1};\dfrac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\ge\dfrac{\left(x+1\right)^2}{y+1}\)
Cộng theo vế 3 BĐT trên rồi áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(x+y+z+3\right)^2}{x+y+z+3}=x+y+z+3=VP\)
áp dụng
\(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2};\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{1}{2}.\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow A\ge\dfrac{[\left(x+y\right)^2}{2}+z^2].\left(\dfrac{1}{2}.\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2+\dfrac{1}{z^2}\right)\)
áp dụng \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
\(\Rightarrow A\ge[\dfrac{\left(x+y\right)^2}{2}+z^2].\left(\dfrac{1}{2}.\left(\dfrac{4}{x+y}\right)^2+\dfrac{1}{z^2}\right)=[\dfrac{\left(x+y\right)^2}{2}+z^2].\left(\dfrac{8}{\left(x+y\right)^2}+\dfrac{1}{z^2}\right)=4+1+\dfrac{\left(x+y\right)^2}{2z^2}+\dfrac{8z^2}{\left(x+y\right)^2}=5+\left(\dfrac{\left(x+y\right)^2}{2z^2}+\dfrac{z^2}{2\left(x+y\right)^2}\right)+\dfrac{15z^2}{2\left(x+y\right)^2}\ge5+2.\sqrt{\dfrac{1}{2}.\dfrac{1}{2}}+\dfrac{15\left(x+y\right)^2}{2.\left(x+y\right)^2}=5+1+\dfrac{15}{2}=\dfrac{27}{2}\)
dbxr<=>y=x=z/2>0
cần CM:
\(\dfrac{1}{S_{ABC}}+\dfrac{1}{S_{IBC}}=\dfrac{1}{S_{MBC}}+\dfrac{1}{S_{NBC}}\)
\(\Leftrightarrow1+\dfrac{S_{ABC}}{S_{IBC}}=\dfrac{S_{ABC}}{S_{MBC}}+\dfrac{S_{ABC}}{S_{NBC}}\)
\(\Leftrightarrow1+\dfrac{S_{ABC}}{S_{IBC}}=\dfrac{AB}{MB}+\dfrac{AC}{NC}\)
mới nghĩ đc tới đây thôi để mai nghĩ nốt nhé