Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 - 2x - 4y2 - 4y
= (x2 - 4y2) - (2x + 4y)
= (x + 2y)(x - 2y) - 2(x + 2y)
= (x + 2y)(x - 2y - 2)
= (x + 2y)[x - 2(y + 1)]
b) x4 + 2x3 - 4x - 4
= (x4 - 4) + ( 2x3 - 4x)
= (x2 - 2)(x2 + 2) + 2x(x2 - 2)
= (x2 - 2)(x2 + 2 + 2x)
c) x3 + 2x2y - x -2y
= (x3 - x) + (2x2y - 2y)
= x(x2 - 1) + 2y(x2 - 1)
= (x + 2y)(x2 - 1)
GIÚP MÌNH VỚI ĐỀ BÀI LÀ RÚT GỌN THÔI NHA THUỘC KIỂU HẰNG ĐẲNG THỨC 6 VÀ 7 GIÚP MÌNH VỚI MÌNH CẦN GẤP TRONG TỐI NAY GIÚP VỚI
\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)
\(=2x^3+16x^2-5x\)
\(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)
\(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)
Let \(A=x^2+2y^2+2x-4\)
From condition, we have: \(y^2=7-x^2\)
Therefore: \(A=x^2+2\left(7-x^2\right)+2x-4\)
\(\Rightarrow A=-x^2+2x+10=-\left(x-1\right)^2+11\le11\)
\(\Rightarrow A_{max}=11\) when \(\left\{{}\begin{matrix}x=1\\y^2=6\end{matrix}\right.\)