Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B
\(\frac{AC}{BC}=\frac{3}{7}\)
\(\Rightarrow\frac{BC}{AC+BC}=\frac{BC}{AB}=\frac{7}{3+7}=\frac{7}{10}\)
\(\Rightarrow BC=30.\frac{7}{10}=21\left(cm\right)\)
Với những điểm C trên đoạn AB sao cho tỉ số của AC CB là 3 : 7. Tìm chiều dài của BC nếu chiều dài của AB là 30 cm . Trả lời: Chiều dài của BC là ...... cm
Dịch là thế này :
Với những điểm C trên đoạn AB sao cho tỉ số của AC BC là 3: 7. Tìm chiều dài của BC nếu chiều dài của AB là 30 cm.
Trả lời: Chiều dài của BC là ...... cm
Làm :
A C B
Dịch :
Với những điểm C trên đoạn AB sao cho tỉ số của AC BC là 3: 7. Tìm chiều dài của BC nếu chiều dài của AB là 30 cm.
Trả lời: Chiều dài của BC là ...... cm
Làm :
A C B
\(\frac{AB}{BC}=\frac{3}{7}\)
\(\Rightarrow\frac{BC}{AC+BC}=\frac{BC}{AB}=\frac{7}{3+7}=\frac{7}{10}\)
\(\Rightarrow BC=30.\frac{7}{10}=21\left(cm\right)\)
Đáp số : \(21cm\)
a) Áp dụng hệ thức lượng số 2 tính được CH \(\Rightarrow BC\)
Áp dụng hệ thức lượng số 1 tính được AB và AC
b) Áp dụng hệ thức lượng đầu tiên bạn tính ra BC khi nhờ vào \(\Delta\)vuông ABH \(\Rightarrow CH\)
Áp dụng hệ thức lượng đầu tiên bạn tính ra AC khi nhờ vào \(\Delta\)vuông ACH
Từ đó tính ra AH theo 2 cách: 1 là dùng hệ thức số 2, 2 là dùng hệ thức số 3. Tính kiểu nào cũng ra
On the supposition that AB<AC
AK be the angle bisector of the triangle
\(\Rightarrow\) \(\frac{KB}{KC}=\frac{AB}{AC}=\frac{2}{3}\)
\(\Rightarrow\frac{MB-MK}{MC+MK}=\frac{MC-MK}{MC+MK}=\frac{2}{3}\)
\(\Rightarrow3MC-3MK=2MC+2MK\)
\(\Rightarrow MC=5MK\)
\(\Rightarrow BK=MC-MK=5MK-MK=4MK\)
Let AH be the height of the triangle
\(\Rightarrow\frac{S_{AKM}}{S_{ABK}}=\frac{\frac{AH.KM}{2}}{\frac{BK.AH}{2}}=\frac{KM}{4KM}=\frac{1}{4}\)
If AB > AC then
\(\Rightarrow CM=5MK\)
\(\Rightarrow Bk=CM+MK=5MK+MK=6MK\)
\(\Rightarrow\frac{S_{AKM}}{S_{AKB}}=\frac{\frac{AH.MK}{2}}{\frac{AH.BK}{2}}=\frac{MK}{6MK}=\frac{1}{6}\)
ta có \(\frac{AB}{AD}=\frac{BC}{DC}\)
mà AB2+AC2=BC2
nên AB =12 ;BC=20
vậy diện h là:96
x^4+ax+b chia hết cho x^2-4
=>x^4+ax+b chia hết cho x-2 và x+2
x^4+ax+b=(x-2)(x^3+2x^2+4x+a+8)+(b+2(a+8))
x^4+ax+b chia hết cho x-2=>b+2(a+8)=0
x^4+ax+b=(x+2)(x^3-2x^2+4x+a-8)+(b+2(8-a))
x^4+ax+b chia hết cho x+2=>b+2(8-a)=0
=>b+2(a+8)=b+2(8-a)
<=>2a+16=16-2a
<=>4a=0
<=>a=0=>b=-16
Tại a=0,b=-16 ,giá trị của a+b=0+(-16)=-16