K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

A C B

\(\frac{AC}{BC}=\frac{3}{7}\)

\(\Rightarrow\frac{BC}{AC+BC}=\frac{BC}{AB}=\frac{7}{3+7}=\frac{7}{10}\)

\(\Rightarrow BC=30.\frac{7}{10}=21\left(cm\right)\)

Với những điểm C trên đoạn AB sao cho tỉ số của AC CB là 3 : 7. Tìm chiều dài của BC nếu chiều dài của AB là 30 cm . Trả lời: Chiều dài của BC là ...... cm

19 tháng 9 2016

Dịch là thế này :

Với những điểm C trên đoạn AB sao cho tỉ số của AC BC là 3: 7. Tìm chiều dài của BC nếu chiều dài của AB là 30 cm.
Trả lời: Chiều dài của BC là ...... cm

Làm :

A C B

19 tháng 9 2016

Dịch : 

Với những điểm C trên đoạn AB sao cho tỉ số của AC BC là 3: 7. Tìm chiều dài của BC nếu chiều dài của AB là 30 cm.
Trả lời: Chiều dài của BC là ...... cm

Làm : 

A C B

\(\frac{AB}{BC}=\frac{3}{7}\)

\(\Rightarrow\frac{BC}{AC+BC}=\frac{BC}{AB}=\frac{7}{3+7}=\frac{7}{10}\)

\(\Rightarrow BC=30.\frac{7}{10}=21\left(cm\right)\)

   Đáp số : \(21cm\)

18 tháng 6 2017

a) Áp dụng hệ thức lượng số 2 tính được CH \(\Rightarrow BC\)

Áp dụng hệ thức lượng số 1 tính được AB và AC

b) Áp dụng hệ thức lượng đầu tiên bạn tính ra BC khi nhờ vào \(\Delta\)vuông ABH \(\Rightarrow CH\)

Áp dụng hệ thức lượng đầu tiên bạn tính ra AC khi nhờ vào \(\Delta\)vuông ACH

Từ đó tính ra AH theo 2 cách: 1 là dùng hệ thức số 2, 2 là dùng hệ thức số 3. Tính kiểu nào cũng ra

8 tháng 12 2016

On the supposition that AB<AC

AK be the angle bisector of the triangle

\(\Rightarrow\)  \(\frac{KB}{KC}=\frac{AB}{AC}=\frac{2}{3}\)

\(\Rightarrow\frac{MB-MK}{MC+MK}=\frac{MC-MK}{MC+MK}=\frac{2}{3}\)

\(\Rightarrow3MC-3MK=2MC+2MK\)

\(\Rightarrow MC=5MK\)

\(\Rightarrow BK=MC-MK=5MK-MK=4MK\)

Let AH be the height of the triangle

\(\Rightarrow\frac{S_{AKM}}{S_{ABK}}=\frac{\frac{AH.KM}{2}}{\frac{BK.AH}{2}}=\frac{KM}{4KM}=\frac{1}{4}\)

If AB > AC then

\(\Rightarrow CM=5MK\)

\(\Rightarrow Bk=CM+MK=5MK+MK=6MK\)

\(\Rightarrow\frac{S_{AKM}}{S_{AKB}}=\frac{\frac{AH.MK}{2}}{\frac{AH.BK}{2}}=\frac{MK}{6MK}=\frac{1}{6}\)

1 tháng 4 2016

ta có \(\frac{AB}{AD}=\frac{BC}{DC}\)

mà AB2+AC2=BC2                  

nên AB =12 ;BC=20

vậy diện h là:96

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0
12 tháng 12 2017

x^4+ax+b chia hết cho x^2-4
=>x^4+ax+b chia hết cho x-2 và x+2
x^4+ax+b=(x-2)(x^3+2x^2+4x+a+8)+(b+2(a+8))
x^4+ax+b chia hết cho x-2=>b+2(a+8)=0
x^4+ax+b=(x+2)(x^3-2x^2+4x+a-8)+(b+2(8-a))
x^4+ax+b chia hết cho x+2=>b+2(8-a)=0
=>b+2(a+8)=b+2(8-a)
<=>2a+16=16-2a
<=>4a=0
<=>a=0=>b=-16
Tại a=0,b=-16 ,giá trị của a+b=0+(-16)=-16