Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) \(A=\frac{-1}{4.5}+\frac{-1}{5.6}-\frac{-1}{7.8}+\frac{-1}{9.10}\)
\(A=\frac{1}{4}\)\(-\left(-\frac{1}{5}\right)+...+\left(-\frac{1}{9}\right)-\left(-\frac{1}{10}\right)\)
\(A=\frac{1}{4}+\frac{1}{10}\)
\(A=\frac{3}{20}\)
Bài 2:
a,17178585=1717:17178585:1717=15;13135151=1313:1015151:101=135115=51255<65255=1351⇒17178585<13135151a,17178585=1717:17178585:1717=15;13135151=1313:1015151:101=135115=51255<65255=1351⇒17178585<13135151
b,201201202202=201201:1001202202:1001=201202=201⋅1001001202⋅1001001=201201201202202202
\(B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(=\frac{B}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.4}\)
\(=\frac{B}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{15}-\frac{1}{28}\)
\(=\frac{B}{7}=\frac{1}{2}-\frac{1}{28}\)
\(=\frac{B}{7}=\frac{13}{28}\)
\(=B=\frac{13}{28}.7\)
\(=B=\frac{13}{4}\)
\(A=-\frac{1}{20}+-\frac{1}{30}+-\frac{1}{42}+...+-\frac{1}{90}\)
\(\Leftrightarrow A=\left(-1\right)\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\left(-1\right)\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(A=-\frac{3}{20}\)
\(a,A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
\(=\frac{-1}{4.5}+\frac{-1}{5.6}+\frac{-1}{6.7}+\frac{-1}{7.8}+\frac{-1}{8.9}+\frac{-1}{9.10}\)
\(=\frac{-1}{4}+\frac{1}{5}-\frac{1}{5}+\frac{1}{6}-...-\frac{1}{9}+\frac{1}{10}\)
\(=-\frac{1}{4}+\frac{1}{10}\)
\(=-\frac{3}{20}\)
\(b,B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(\frac{B}{7}=\frac{5}{2.7}+\frac{4}{11.7}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-....-\frac{1}{28}\)
\(=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
a) \(A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
\(\Rightarrow-1.A=\frac{1}{20}+\frac{1}{30}+........+\frac{1}{90}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+........+\frac{1}{9.10}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+........+\frac{1}{9}-\frac{1}{10}=\frac{1}{4}-\frac{1}{10}=\frac{3}{20}\)
\(\Rightarrow A=\frac{3}{20}:\left(-1\right)=\frac{-3}{20}\)
b) \(B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(\Rightarrow\frac{1}{7}B=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
\(\Rightarrow B=\frac{13}{28}:\frac{1}{7}=\frac{13}{28}.7=\frac{13}{4}\)
a) A = \(\frac{1}{5}\) - \(\frac{1}{4}\)+ \(\frac{1}{6}\)- \(\frac{1}{5}\)+ \(\frac{1}{7}\)-\(\frac{1}{6}\)+\(\frac{1}{8}\)-\(\frac{1}{7}\)+\(\frac{1}{9}\)- \(\frac{1}{8}\)+ \(\frac{1}{10}\)- \(\frac{1}{9}\)
= \(\frac{-1}{4}\)+\(\frac{1}{10}\)= \(\frac{-6}{40}\)= \(\frac{-3}{20}\)
b) B = \(\frac{5}{2.1}\)+ \(\frac{1}{11}\)(4 + \(\frac{3}{2}\)) + \(\frac{1}{2.15}\)(1 + \(\frac{13}{2}\))
= \(\frac{5}{2.1}\)+ \(\frac{1}{11}\).\(\frac{11}{2}\)+ \(\frac{1}{2.15}\).\(\frac{15}{2}\)
= \(\frac{5}{2}\)+ \(\frac{1}{2}\)+ \(\frac{1}{4}\)= 3 + \(\frac{1}{4}\)= \(\frac{13}{4}\)
\(B=7\left(\frac{5}{2.1}+\frac{4}{1.11}+...+\frac{13}{15.4}\right)\)
\(B=7\left(\frac{5}{2.7}+\frac{4}{7.11}+...+\frac{13}{15.28}\right)\)
\(B=7\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{15}-\frac{1}{28}\right)\)
\(B=7\left(\frac{1}{2}-\frac{1}{28}\right)\)
\(B=7\times\frac{13}{28}\)
\(B=\frac{13}{4}\)
1717/8585 = 17/85 = 1/5. 1313/5151=13/51. Mà 1/5 <13/51
Vay 1718 <1313/5151
\(\frac{17}{85}vs\frac{13}{51}=\frac{1}{5}vs\frac{1}{3}\)
ta thấy 5>3
=>\(\frac{1717}{8585}< \frac{1313}{5151}\)
Bài 2:
a, S = 1/11 + 1/12 + .. +1/20 với 1/2
SỐ số hạng tổng S: [20 - 11]: 1 + 1 = 10 số
mà 1/11 > 1/20
1/12 > 1/20
.........................
1/20 = 1/20
=> 1/11 + 1/12 + ... + 1/20 > 1/20 . 10 => S > 1/2
b, B = 2015/2016 + 2016/2017 và C = 2015+2016/2016+2017
Dễ dàng ta thấy: C = 4031/4033 < 1
B = 2015/2016 + 2016/2017
B = 2015/2016 + [1/2016 + 4062239/4066272]
B = [2015/2016 + 1/2016] + 4062239/4066272]
B = 1 +4062239/4066272
=> B > 1
Vậy B > C
c, [-1/5]^9 và [-1/25]^5
ta có: 255 = [52]5 = 52.5 = 510 > 59
=> [1/5]9 > [1/25]5
=> [-1/5]9 < [-1/25]5
d, 1/32+1/42+1/52+1/62 và 1/2
ta có: 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 = 1/9 + 1/16 + 1/25 + 1/36
mà: 1/9 < 1/8
1/16 < 1/8
1/25 < 1/8
1/36 < 1/8
=> 1/9+1/16+1/25+1/36 < 1/2
Vậy 1/32+1/42+1/52+1/62 < 1/2
Bài 1:
A = 3/4 . 8/9 . 15/16....2499/2500
A = [1.3/22][2.4/32]....[49.51/502]
A = [1.2.3.4.5...51 / 2.3.4....50][3.4.5...51 / 2.3.4...50]
A = 1/50 . 51/2
A = 51/100
B = 22/1.3 + 32/2.4 + ... + 502/49.51
B = 4/3.9/8....2500/2499
Nhận thấy B ngược A => B = 100/51 [cách tính tương tự tính A]
Bài 2:
a. S = 1/11+1/12+...+1/20 và 1/2
Số số hạng tổng S: [20 - 11]: 1 + 1 = 10 [ps]
ta có: 1/11 > 1/20
\(a,\Rightarrow A=-1\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{9.10}\right)\)
\(\Rightarrow A=-1\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(\Rightarrow A=-1\left(\dfrac{1}{4}-\dfrac{1}{10}\right)\)
\(\Rightarrow A=\dfrac{-3}{20}\)
Bài 2:
\(a,\dfrac{1717}{8585}=\dfrac{1717:1717}{8585:1717}=\dfrac{1}{5};\dfrac{1313}{5151}=\dfrac{1313:101}{5151:101}=\dfrac{13}{51}\\ \dfrac{1}{5}=\dfrac{51}{255}< \dfrac{65}{255}=\dfrac{13}{51}\\ \Rightarrow\dfrac{1717}{8585}< \dfrac{1313}{5151}\)
\(b,\dfrac{201201}{202202}=\dfrac{201201:1001}{202202:1001}=\dfrac{201}{202}=\dfrac{201\cdot1001001}{202\cdot1001001}=\dfrac{201201201}{202202202}\)