K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

căn bặc 2 của 2013 là

số thập phân vô hạn tuần hoàn

nên ko có số hữu tỉ nào mũ 2 bằng 2013

ok

4 tháng 1 2017

cảm ơn nhìu!!!!!!!!!

4 tháng 1 2017

\(x^2=2013\)

\(\rightarrow x^{ }=\sqrt{2013}\)

\(\rightarrow x=44,866....\)

\(44,866...\) là số thập phân vô hạn tuần hoàn , không phải số hữu tỉ

\(\Rightarrow\) không tồn tại số hữu tỉ x sao cho \(x^2=2013\) (đpcm)

9 tháng 7 2017

giả sử tồn tại hai số hữu tỉ thỏa mãn đẳng thức :

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)

\(\Rightarrow xy=\left(x+y\right)\left(y+x\right)\)

\(\Rightarrow xy=\left(x+y\right)^2\)

Mà x và y là hai số trái dấu => ( x + y )2 > 0 còn xy < 0 

Vậy ...

10 tháng 9 2017

A, Ta thấy:

Vt dạng tổng quát: a.a \(\ne2\), và ko số nào có bình phương = 2

b , x^2 = 5 ( ko thể tòn tại) vì bình phương của 1 số chỉ có tận cùng chẵn hoặc số chẵn

c, tương tự : x^2= 7 ( ko thể tồn tại) vì bình phương của 1 số chỉ có tận cùng chẵn hoặc số chẵn

28 tháng 7 2018

Ta có: \(xy=\frac{13}{15}\Rightarrow x=\frac{13}{15y}\)

\(yz=\frac{1}{3}\Rightarrow y=\frac{1}{3z}\)

\(zx=-\frac{3}{13}\Rightarrow z=-\frac{3}{13x}\)

Thay x vào z ta có:

\(z=-\frac{3}{13x}=-\frac{3}{13.\frac{13}{15y}}\)

\(z=-\frac{45y}{169}\)

Thay y vào z ta có:

\(z=\frac{-45.\frac{1}{3}z}{169}\)

\(z=-\frac{15}{169}z\)( vô lý )

\(\Rightarrow\)z không có giá trị

\(\Rightarrow\)x;y không có giá trị

                                đpcm

Giải :

Nhân từng vế của ba đẳng thức đã cho ta được :

    xy . yz . zx = 13/15 .11/3 . ( - 3/13 )

\(\Leftrightarrow\)( xyz )\(^2\)= - 11/15 ( 1 )

Đẳng thức (1) không xảy ra vì (xyz)\(^2\)\(>\)\(0\)

Vậy không tồn tại ba số hữu tỉ x , y , z thỏa mãn điều kiện đề bài 

10 tháng 6 2015

y.y=13/15

=>x và y cùng dấu(1)

y.z=11/3

=>y và z cũng cùng dấu(2)

Mà z.x=-3/11

=> x và z lại trái dấu(3)

Từ (1),(2) và (3) => 3 số x,y,z k tồn tại

                                 Vay x,y,z khong ton tai 

9 tháng 6 2015

x.y=13/15

=>x và y cùng dấu(1)

y.z=11/3

=>y và z cũng cùng dấu(2)

Mà z.x=-3/11

=> x và z lại trái dấu(3)

Từ (1),(2) và (3) => 3 số x,y,z k tồn tại

21 tháng 1 2015

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{x+y}=\frac{y}{xy}+\frac{x}{xy}=\frac{x+y}{xy}\)

=> (x+y)2 = xy .Vì (x+y)2 \(\ge\)0 nên xy\(\ge\)0 => x,y cùng dấu 

Vậy không tồn tại x, y trái dấu thoả mãn đẳng thức đã cho

15 tháng 10 2017

Giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đề bài

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{x+y}=\frac{x}{xy}+\frac{y}{xy}\Rightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Rightarrow\left(x+y\right)^2=xy\)

Vì x và y là hai số trái dấu => xy < 0

Mà \(\left(x+y\right)^2\ge0\forall x,y\)

=> Mâu thuẫn => giả sử sai

Vậy không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đề bài

15 tháng 10 2017

cảm ơn bạn nha..