K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2019

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

21 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

4 tháng 4 2016

Sai đề rồi nha bạn! 

Đề:  Cho  \(a,b,c>0\)  thỏa mãn  \(a^2+b^2+c^2=\frac{5}{3}.\)  Chứng minh rằng:  \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)

Lời giải:

Với mọi  \(a,b,c\in R\)  thì ta luôn có:

\(a^2+b^2+c^2\ge2bc+2ca-2ab\)  \(\left(\text{*}\right)\) 

Ta cần chứng minh  \(\left(\text{*}\right)\)  là bất đẳng thức đúng!

Thật vậy,  từ  \(\left(\text{*}\right)\)  \(\Leftrightarrow\)  \(a^2+b^2+c^2+2ab-2bc-2ca\ge0\)

                             \(\Leftrightarrow\)  \(\left(a+b-c\right)^2\ge0\)  \(\left(\text{**}\right)\)

Bất đẳng thức  \(\left(\text{**}\right)\)  hiển nhiên đúng với mọi  \(a,b,c\) , mà các phép biến đổi trên tương đương 

Do đó, bất đẳng thức  \(\left(\text{*}\right)\)  được chứng minh.

Xảy ra đẳng thức trên khi và chỉ khi  \(a+b=c\)

Mặt khác,  \(a^2+b^2+c^2=\frac{5}{3}\)  (theo giả thiết)

Mà  \(\frac{5}{3}=1\frac{2}{3}<2\)

\(\Rightarrow\)  \(a^2+b^2+c^2<2\)  \(\left(\text{***}\right)\)

Từ  \(\left(\text{*}\right)\) kết hợp với  \(\left(\text{***}\right)\), ta có thể viết 'kép' lại:  \(2bc+2ca-2ab\le a^2+b^2+c^2<2\)

Suy ra  \(2bc+2ca-2ab<2\)

Khi đó, vì  \(abc>0\) (do  \(a,b,c\) không âm) nên chia cả hai vế của bất đẳng trên cho  \(2abc\), ta được:

\(\frac{2bc+2ca-2ab}{2abc}<\frac{2}{2abc}\)

\(\Leftrightarrow\)  \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)

Vậy, với  \(a,b,c\)  là các số thực dương thỏa mãn điều kiện  \(a^2+b^2+c^2=\frac{5}{3}\)  thì ta luôn chứng minh được:

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)

31 tháng 8 2019

Ta co:\(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{1}{4}\)

Dat \(P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)

\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)

\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}.\frac{a^2+b^2}{a^2b^2}\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{16}.\frac{2}{ab}\ge1+\frac{15}{16}.\frac{2}{\frac{1}{4}}=\frac{17}{2}\)

Dau '=' xay ra \(a=b=\frac{1}{2}\)

Vay \(P_{min}=\frac{17}{2}\)khi \(a=b=\frac{1}{2}\)

21 tháng 6 2020

\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)

\(\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Dễ có:\(\left(1+a\right)\left(1+b\right)\left(1+c\right)\le\left(\frac{3+a+b+c}{3}\right)^3\le8\)

Khi đó \(B\ge\frac{3}{2}\)

Đẳng thức xảy ra tại a=b=c=1