Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
Sai đề rồi nha bạn!
Đề: Cho \(a,b,c>0\) thỏa mãn \(a^2+b^2+c^2=\frac{5}{3}.\) Chứng minh rằng: \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)
Lời giải:
Với mọi \(a,b,c\in R\) thì ta luôn có:
\(a^2+b^2+c^2\ge2bc+2ca-2ab\) \(\left(\text{*}\right)\)
Ta cần chứng minh \(\left(\text{*}\right)\) là bất đẳng thức đúng!
Thật vậy, từ \(\left(\text{*}\right)\) \(\Leftrightarrow\) \(a^2+b^2+c^2+2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\) \(\left(a+b-c\right)^2\ge0\) \(\left(\text{**}\right)\)
Bất đẳng thức \(\left(\text{**}\right)\) hiển nhiên đúng với mọi \(a,b,c\) , mà các phép biến đổi trên tương đương
Do đó, bất đẳng thức \(\left(\text{*}\right)\) được chứng minh.
Xảy ra đẳng thức trên khi và chỉ khi \(a+b=c\)
Mặt khác, \(a^2+b^2+c^2=\frac{5}{3}\) (theo giả thiết)
Mà \(\frac{5}{3}=1\frac{2}{3}<2\)
\(\Rightarrow\) \(a^2+b^2+c^2<2\) \(\left(\text{***}\right)\)
Từ \(\left(\text{*}\right)\) kết hợp với \(\left(\text{***}\right)\), ta có thể viết 'kép' lại: \(2bc+2ca-2ab\le a^2+b^2+c^2<2\)
Suy ra \(2bc+2ca-2ab<2\)
Khi đó, vì \(abc>0\) (do \(a,b,c\) không âm) nên chia cả hai vế của bất đẳng trên cho \(2abc\), ta được:
\(\frac{2bc+2ca-2ab}{2abc}<\frac{2}{2abc}\)
\(\Leftrightarrow\) \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)
Vậy, với \(a,b,c\) là các số thực dương thỏa mãn điều kiện \(a^2+b^2+c^2=\frac{5}{3}\) thì ta luôn chứng minh được:
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)
Ta co:\(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{1}{4}\)
Dat \(P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)
\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)
\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}.\frac{a^2+b^2}{a^2b^2}\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{16}.\frac{2}{ab}\ge1+\frac{15}{16}.\frac{2}{\frac{1}{4}}=\frac{17}{2}\)
Dau '=' xay ra \(a=b=\frac{1}{2}\)
Vay \(P_{min}=\frac{17}{2}\)khi \(a=b=\frac{1}{2}\)
\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
\(\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Dễ có:\(\left(1+a\right)\left(1+b\right)\left(1+c\right)\le\left(\frac{3+a+b+c}{3}\right)^3\le8\)
Khi đó \(B\ge\frac{3}{2}\)
Đẳng thức xảy ra tại a=b=c=1