Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin chào các bạn !!!
Hãy Đăng Kí Cho Channel Kaito1412_TV Để nhé !
Link là : https://www.youtube.com/channel/UCqgS-egZEJIX-ON873XpD_Q/videos?view_as=subscriber
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC và AO là phân giác của góc BAC
Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
AO là phân giác của góc BAC
=>\(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)
Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)
nên ΔABC đều
b: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
=>\(OH\cdot OA=R^2\)
DFCE nội tiếp
=>góc DFE=góc DCE=90 độ
ΔDOF đồng dạng với ΔDAB
=>DO/DA=DF/DB(1)
ΔOAB vuông tại B
=>OA^2=BO^2+BA^2
=>AB=Rcăn 3
=>DA=R căn 7
(1) =>R/Rcăn7=DF/2R
=>DF=2R/căn 7
Kẻ BH vuông góc DA
\(S_{ABD}=\dfrac{1}{2}\cdot BD\cdot AB=\dfrac{1}{2}\cdot BH\cdot DA\)
=>BH=2*Rcăn 3/căn 7
=>\(S_{BDF}=\dfrac{2R^2\sqrt{3}}{7}\)