K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
19 tháng 3 2022
1, Vì MA ; MB lần lượt là tiếp tuyến (O) với A;B là tiếp điểm
=> ^MAO = ^MBO = 900
Xét tam giác MAOB có ^MAO + ^MBO = 1800
mà 2 góc đối Vậy tứ giác MAOB là tứ giác nt 1 đường tròn
2, Xét tam giác MAC và tam giác MDA
^M _ chung
^MAC = ^MDA ( cùng chắn cung AC )
Vậy tam giác MAC ~ tam giác MDA (g.g)
\(\dfrac{MA}{MD}=\dfrac{MC}{MA}\Rightarrow MA^2=MD.MC\)
3, Ta có AM = MB ( tc tiếp tuyến cắt nhau )
OB = OA = R
Vậy MO là đường trung trực
Xét tam giác MAO vuông tại A, đường cao AH
AO^2 = OH . OM ( hệ thức lượng )
\(\Rightarrow OM.OH+MC.MD=AO^2+AM^2=OM^2\left(pytago\right)\)
M A B O I C H
Câu a: Theo tính chất của tiếp tuyến luôn có \(\widehat{MAO}=\widehat{MBO}=90^0\)
Nên tứ giác MAOB nội tiếp đường tròn đường kính MO
Câu b :Vì MA,MB là tiếp tuyến tại A,B ; Cát tuyến CD , Nên ta có phương tích Từ M đến đường tròn (O) :
\(MA.MA=MO^2-OI^2\left(1\right)\)
\(MC.MD=MO^2-OI^2\left(2\right)\)
Từ 1, 2 Có \(MC.MD=MA.MA=MA^2\left(dpcm\right)\)
Câu C:Xét tam giác vuông \(\Delta MAO\)Vuông tại A; theo tính chất tiếp tuyến tiếp tuyến luôn có \(AB⊥MO\)tại H .Theo hệ thức lượn trong tam giác vuông : \(OH.OM=OA^2\)(Vì có AH là đường cao) mà \(OM^2=OA^2+MA^2\Rightarrow OM^2=OH.OM+MC.MD\left(dpcm\right)\)
Câu D:Vì theo tính chất của tiếp tuyến có I là điểm chính giữa \(\widebat{AB}\Rightarrow\widebat{AI}=\widebat{BI}\Rightarrow\widehat{MAI}=\widehat{IAB}\)(Cùng chắn 2 cung bằng nhau)
nên \(AI\)là phân giác của góc \(\widehat{MAH}\)Nên theo tính chất đường phân giác trong ta có :\(\frac{MI}{MH}=\frac{MA}{HA}\left(3\right)\)
Theo tính chất phương tích của M và (O) có : \(\hept{\begin{cases}MA^2=MC.MA\\MA^2=MH.MO\end{cases}\Leftrightarrow MC.MD=MH.MO\Leftrightarrow\frac{MC}{MH}=\frac{MD}{MO}}\)mà hai tam giác \(\Delta MHC,\Delta MDO\)Chung góc \(\widehat{CMH}\)nên hai tam giác đồng dạng
\(\frac{MH}{CH}=\frac{MD}{MO}\left(4\right)\)
Mặt khác :
\(\hept{\begin{cases}\widehat{AMO}chung\\\widehat{MHA=\widehat{MA0}}\end{cases}}\Rightarrow\Delta MAO=\Delta MHA\Rightarrow\frac{MO}{OA}=\frac{MA}{AH}\left(5\right)\)
Từ 3,4,5 ta có : \(\frac{IM}{IH}=\frac{MC}{CH}\Rightarrow\)\(CI\)là phân giác của góc \(\widehat{MCH}\)
Mình thấy phần C bạn giải không liên quan lắm