\(\frac{x+3}{x-3}-\frac{x-3}{x+3}=\frac{48}{9-x^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

á đù dân đông anh này :>

2 tháng 4 2020

quy đồng vế trái là ra 

19 tháng 12 2016

1)

ĐKXĐ: x\(\ne\)3

ta có :

\(\frac{x^2-6x+9}{2x-6}=\frac{\left(x-3\right)^2}{2\left(x-3\right)}=\frac{x-3}{2}\)

để biểu thức A có giá trị = 1

thì :\(\frac{x-3}{2}\)=1

=>x-3 =2

=>x=5(thoả mãn điều kiện xác định)

vậy để biểu thức A có giá trị = 1 thì x=5

30 tháng 12 2016

1)

\(A=\frac{x^2-6x+9}{2x-6}\)

A xác định

\(\Leftrightarrow2x-6\ne0\)

\(\Leftrightarrow2x\ne6\)

\(\Leftrightarrow x\ne3\)

Để A = 1

\(\Leftrightarrow x^2-6x+9=2x-6\)

\(\Leftrightarrow x^2-6x-2x=-6-9\)

\(\Leftrightarrow x^2-8x=-15\)

\(\Leftrightarrow x=3\) (loại vì không thỏa mãn ĐKXĐ)

30 tháng 12 2019

\(e ) Để \)  \(M\)\(\in\)\(Z \)  \(thì\) \(1 \)\(⋮\)\(x +3\)

\(\Leftrightarrow\)\(x + 3 \)\(\in\)\(Ư\)\((1)\)\(= \) { \(\pm\)\(1 \) }

\(Lập\)  \(bảng :\)

\(x +3\)\(1\)\(- 1\)
\(x\)\(-2\)\(- 4\)

\(Vậy : Để \)  \(M\)\(\in\)\(Z\)  \(thì\) \(x\)\(\in\)\(- 4 ; - 2\) }

30 tháng 12 2019

e) Để M \(\in\)Z <=> \(\frac{1}{x+3}\in Z\)

<=> 1 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(1) = {1; -1}

Lập bảng: 

x + 31-1
  x-2-4

Vậy ....

f) Ta có: M > 0

=> \(\frac{1}{x+3}\) > 0

Do 1 > 0 => x + 3 > 0

=> x > -3

Vậy để M > 0 khi x > -3 ; x \(\ne\)3 và x \(\ne\)-3/2

3 tháng 6 2020

\(\frac{x+3}{x-3}+\frac{48}{9-x^2}=\frac{x-3}{x+3}\)

ĐKXĐ: \(x\ne3;x\ne-3\)

\(\Leftrightarrow\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\frac{48}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Rightarrow x^2+6x+9-48-x^2+6x-9=0\)

\(\Leftrightarrow12x-48=0\)

\(\Leftrightarrow12x=48\)

\(\Leftrightarrow x=4\left(TM\right)\)

Vậy phương trình có tập nghiệm là: S ={4}

29 tháng 11 2019

Làm ngắn gọn thôi nhé :v

\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)

\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)

\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)

\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)

\(A=\frac{x+2}{x-3}\)

\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)

\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)

\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{x+2}{x-2}\)

\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{10x}{-x^2+9}\)

\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)

\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)

\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)

\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)

\(D=\frac{51x-15}{2x^3-18x}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)

\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)

\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)

\(E=\frac{10x^2+10}{x^4-2x+1}\)

10 tháng 2 2018

\(\text{a, ĐKXĐ: }\hept{\begin{cases}x+3\ne0\\x-3\ne0\\3x^2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\mp3\\x\ne0\end{cases}}\)

\(A=\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\left[\frac{\left(3-x\right)\left(x+3\right)^2}{\left(x+3\right)\left(x+3\right)\left(x-3\right)}+\frac{x}{x+3}\right]\cdot\frac{x+3}{3x^2}\)

\(=\frac{x-x-3}{x+3}\cdot\frac{x+3}{3x^2}\)

\(=-\frac{1}{x^2}\)

b, với x=\(-\frac{1}{2}\)ta có:

\(A=-\frac{1}{\left(-\frac{1}{2}\right)^2}=-4\)

c, Để A<0 thì \(-\frac{1}{x^2}< 0\text{ mà }x^2>0\left(\text{vì x khác 0 ĐKXĐ}\right)\)

Với x khác 0 thì thỏa mãn!

10 tháng 2 2018

a)   ĐKXĐ:  \(x\ne\pm3\)

\(A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\left(\frac{3-x}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\frac{\left(3-x\right)\left(x+3\right)+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{3x^2}\)

\(=\frac{3\left(3-x\right)}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{3x^2}\)

\(=-\frac{1}{x^2}\)

Bài 1: 

a: \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{x+1}\)

b: \(=\dfrac{xy\left(x^2+y^2\right)}{x^4y}\cdot\dfrac{1}{x^2+y^2}=\dfrac{x}{x^4}=\dfrac{1}{x^3}\)

c: Đề thiếu rồi bạn

14 tháng 12 2016

\(=\frac{9}{x\left(x^2-9\right)}+\frac{1}{x+3}.\frac{x\left(x+3\right)}{x-3}-\frac{x}{3\left(x+3\right)}\)
\(=\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{x}{x-3}-\frac{x}{3\left(x+3\right)}\)
\(=\frac{9.3+x.3x.\left(x+3\right)-x.x\left(x-3\right)}{3x\left(x-3\right)\left(x+3\right)}\)
\(=\frac{27+3x^3+9x^2-x^3+3x^2}{3x\left(x-3\right)\left(x+3\right)}\)
\(=\frac{27+2x^3+12x^2}{3x\left(x-3\right)\left(x+3\right)}\)
Tới đây không nhớ làm sao nữa. Sorry bẹn

14 tháng 12 2016

Bẹn kia giải sai rồi

NV
3 tháng 4 2019

Bài 1:

a/ \(x\ne1;2\)

\(\frac{x-2}{\left(x-1\right)\left(x-2\right)}-\frac{7\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}=0\)

\(\Leftrightarrow x-2-7x+7+1=0\)

\(\Leftrightarrow-6x+6=0\)

\(\Rightarrow x=1\) (loại)

Vậy pt vô nghiệm

b/ \(x\ne\frac{3}{2}\)

\(\frac{2x+3}{2x-3}-\frac{3}{2\left(2x-3\right)}-\frac{2}{5}=0\)

\(\Leftrightarrow\frac{10\left(2x+3\right)}{10\left(2x-3\right)}-\frac{15}{10\left(2x-3\right)}-\frac{4\left(2x-3\right)}{10\left(2x-3\right)}=0\)

\(\Leftrightarrow20x+30-15-8x+12=0\)

\(\Leftrightarrow12x+27=0\)

\(\Rightarrow x=-\frac{9}{4}\)

c/ \(x\ne\pm1\)

\(\frac{x+1}{x-1}-\frac{4}{x+1}+\frac{3-x^2}{x^2-1}=0\)

\(\Leftrightarrow\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}+\frac{3-x^2}{x^2-1}=0\)

\(\Leftrightarrow x^2+2x+1-4x+4+3-x^2=0\)

\(\Leftrightarrow-2x+8=0\)

\(\Rightarrow x=4\)

NV
3 tháng 4 2019

Bài 1:

d/\(x\ne\pm3\)

\(\frac{x-1}{x+3}-\frac{x}{x-3}+\frac{7x-3}{x^2-9}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{x^2-9}-\frac{x\left(x+3\right)}{x^2-9}+\frac{7x-3}{x^2-9}=0\)

\(\Leftrightarrow x^2-4x+3-x^2-3x+7x-3=0\)

\(\Rightarrow0=0\)

Vậy pt có vô số nghiệm \(x\ne\pm3\)

e/ \(x\ne\pm1\)

\(\frac{1}{x+1}+\frac{2}{x^2\left(x-1\right)-\left(x-1\right)}+\frac{3}{x^2-1}=0\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{2}{\left(x^2-1\right)\left(x-1\right)}+\frac{3}{x^2-1}=0\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{2}{\left(x+1\right)\left(x-1\right)^2}+\frac{3}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)^2}+\frac{2}{\left(x+1\right)\left(x-1\right)^2}+\frac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^2}=0\)

\(\Leftrightarrow x^2-2x+1+2+3x-3=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\left(l\right)\end{matrix}\right.\)

c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)

d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)

e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=\dfrac{0}{2\left(x-y\right)\left(x+y\right)}=0\)