Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Giải phương trình:
a)
b) (x+5)(x+2) – 3(4x-3) = (5 – x) 2
c) ( 3x – 1) 2 – 5( 2x + 1)2 + ( 6x – 3) ( 2x+ 1) = ( x – 1)2
Bài 2: Giải phương trình:
a)
b)
Bài 3: Giải Phương trình với tham số a, b
a) a ( ax+ b) = b2 (x – 1)
b) a2x – ab = b2( x- 1)
Bài 4: Giải phương trình mới tham số a
a)
b)
c)
\(\left(x+5\right)\left(x+2\right)-3\left(4x-3\right)=\left(5-x\right)2\)
\(\Leftrightarrow x^2+7x+10-12x+9=10-2x\)
\(\Leftrightarrow x^2-3x+9=0\)
Mà \(x^2-3x+9>0\)nên pt vô nghiệm
Bài 9:
Không, vì $x+2=0$ có nghiệm duy nhất $x=-2$ còn $\frac{x}{x+2}=0$ ngay từ đầu đkxđ đã là $x\neq -2$ (cả 2 pt không có cùng tập nghiệm)
Bài 8:
a. Khi $m=2$ thì pt trở thành:
$(2^2-9)x-3=2$
$\Leftrightarrow -5x-3=2$
$\Leftrightarrow -5x=5$
$\Leftrightarrow x=-1$
b.
Khi $m=3$ thì pt trở thành:
$(3^2-9)x-3=3$
$\Leftrightarrow 0x-3=3$
$\Leftrightarrow 0=6$ (vô lý)
c. Khi $m=3$ thì pt trở thành:
$[(-3)^2-9]x-3=-3$
$\Leftrightarrow 0x-3=-3$ (luôn đúng với mọi $x\in\mathbb{R}$)
Vậy pt vô số nghiệm thực.
a: \(\Leftrightarrow\left(x^2-6x+9\right)^2-15\left(x^2-6x+9+1\right)-1=0\)
\(\Rightarrow\left(x^2-6x+9\right)^2-15\left(x^2-6x+9\right)-16=0\)
\(\Leftrightarrow\left(x^2-6x+9-16\right)\left(x^2-6x+9+1\right)=0\)
\(\Leftrightarrow x^2-6x-7=0\)
=>(x-7)(x+1)=0
=>x=7 hoặc x=-1
b: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
=>x+1=0
hay x=-1
Bài 1:
PT $\frac{1}{x}+1=0\Leftrightarrow x=-1$
PT $x^2+1=0\Leftrightarrow x^2=-1< 0$ (vô lý) nên PT vô nghiệm.
Vậy PT(1) có tập nghiệm $\left\{-1\right\}$ còn PT(2) có tập nghiệm $\left\{\varnothing\right\}$ nên 2 PT này không tương đương.
Bài 3:
ĐKXĐ: $x\neq 0;\pm 1$
a)
\(Q=\left(\frac{x^2-1}{2x}\right)^2.\frac{(x-1)^2-(x+1)^2}{(x-1)(x+1)}=\frac{(x-1)^2(x+1)^2}{4x^2}.\frac{-4x}{(x+1)(x-1)}=\frac{-(x-1)(x+1)}{x}=\frac{1-x^2}{x}\)
b) Để $Q=-1,5\Leftrightarrow \frac{1-x^2}{x}=-1,5$
$\Rightarrow 1-x^2=-1,5x$
$\Leftrightarrow x^2-1,5x-1=0$
$\Leftrightarrow (x-2)(x+0,5)=0\Rightarrow x=2$ hoặc $x=-0,5$ (đều thỏa mãn)
c)
Để $Q$ không âm thì $\frac{1-x^2}{x}\geq 0$. Điều này xảy ra khi:
TH1 :\(\left\{\begin{matrix} 1-x^2\geq 0\\ x> 0\end{matrix}\right.\Leftrightarrow 0< x\leq 1\)
TH2: \(\left\{\begin{matrix} 1-x^2\leq 0\\ x<0\end{matrix}\right.\Leftrightarrow x\leq -1\)
Kết hợp với ĐKXĐ suy ra $0< x< 1$ hoặc $x< -1$