">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

4, a, Ta co: BC = BH + HC = 10cm

\(\Delta ABC\) vuông tại A có AH là đường cao tương ứng với cạnh huyền BC

=> \(AB^2=BH.BC=3,6.10=36\)

=> \(AB=\sqrt{36}=6cm\)

Ta co: \(AC^2=HC.BC=6,4.10=64\)

=> \(AC=\sqrt{64}=8cm\)

Ta co: AB.AC = BC.AH

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\)

20 tháng 7 2017

Bài 1:

a)

\(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\) ĐKXĐ: x >1

\(=\left(\dfrac{2\sqrt{x}.\sqrt{x}}{2.2\sqrt{x}}-\dfrac{2}{2.2\sqrt{x}}\right)\left(\dfrac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)^2}-\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{2x-2}{4\sqrt{x}}\right)\left(\dfrac{x\sqrt{x}-x-x+\sqrt{x}-x\sqrt{x}-x-x-\sqrt{x}}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{\left(x-1\right)^2}\right)\\ =\dfrac{\left(x-1\right).\left(-4x\right)}{2\sqrt{x}.\left(x-1\right)^2}=\dfrac{-2\sqrt{x}}{x-1}\)

b)

Với x >1, ta có:

A > -6 \(\Leftrightarrow\dfrac{-2\sqrt{x}}{x-1}>-6\Rightarrow-2\sqrt{x}>-6\left(x-1\right)\)

\(\Leftrightarrow-2\sqrt{x}+6x-6>0\\ \Leftrightarrow x-\dfrac{2}{6}\sqrt{x}-1>0\\ \Leftrightarrow x-2.\dfrac{1}{6}\sqrt{x}+\left(\dfrac{1}{6}\right)^2>1+\dfrac{1}{36}\\ \Leftrightarrow\left(\sqrt{x}-\dfrac{1}{6}\right)^2>\dfrac{37}{36}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{6}-\sqrt{x}>\dfrac{\sqrt{37}}{6}\\\sqrt{x}-\dfrac{1}{6}>\dfrac{\sqrt{37}}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-\sqrt{x}>\dfrac{\sqrt{37}-1}{6}\\\sqrt{x}>\dfrac{\sqrt{37}+1}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x>\dfrac{19-\sqrt{37}}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{\sqrt{37}-19}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\)

Vậy không có x để A >-6

20 tháng 7 2017

làm 1 bài đủ nản @_ @

Bài 3: 

a: \(B=\left(\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{x-4+10-x}{\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{x-4}\cdot\dfrac{\sqrt{x}+2}{6}\)

\(=\dfrac{-6}{x-4}\cdot\dfrac{\sqrt{x}+2}{6}=\dfrac{-1}{\sqrt{x}-2}\)

b: Để B>0 thì \(\sqrt{x}-2< 0\)

=>0<x<4

5 tháng 9 2016

ảnh bn hả đẹp quá

Xnh ko cưỡng nổi ak

^^

chúc chj hok tốt nhá, vui vẻ
 

5 tháng 9 2016

Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn

5 tháng 9 2016

Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy 

12 tháng 3 2017

cj hãy xem tư duy toán của em nhé: muốn tính đg trung bình, cần bit cạnh a, đề cho tg đều và s thì quá đủ đk r

S = a2 \(\sqrt{3}\)/4 = 9căn3/4 => a = 3 quá đơn giản

đg trug bình = a/2 = 3/2 = 1,5cm chắc chắn đúng

12 tháng 3 2017

tuy không hiểu cái gì về toán của mấy lớp trên nhưng thấy bạn giải rất hợp líoho

13 tháng 8 2016

Để D đạt GTNN

=>\(3+\sqrt{9-4x^2}\) đạt GTLN

Ta thấy: \(-4x^2\le0\)

\(\Rightarrow9-4x^2\le9\)

\(\Rightarrow\sqrt{9-4x^2}\le\sqrt{9}=3\)

\(\Rightarrow3+\sqrt{9-4x^2}\le3+3=6\)

\(\Rightarrow Min_D=\frac{2}{6}=\frac{1}{3}\) khi x=0

Vậy \(Min_D=\frac{1}{3}\) khi x=0

13 tháng 8 2016

Nhận xét : D > 0

Để D đạt giá trị nhỏ nhất thì \(3+\sqrt{9-4x^2}\) đạt giá trị lớn nhất \(\Leftrightarrow\sqrt{9-4x^2}\) đạt giá trị lớn nhất

Mà ta có : \(-4x^2\le0\Leftrightarrow-4x^2+9\le9\Leftrightarrow\sqrt{9-4x^2}\le3\)

=> Max \(\left(3+\sqrt{9-4x^2}\right)=6\) . Dấu "=" xảy ra khi x = 0

Vậy Min D \(=\frac{2}{6}=\frac{1}{3}\) <=> x = 0