Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)
\(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\) ĐKXĐ: x >1
\(=\left(\dfrac{2\sqrt{x}.\sqrt{x}}{2.2\sqrt{x}}-\dfrac{2}{2.2\sqrt{x}}\right)\left(\dfrac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)^2}-\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{2x-2}{4\sqrt{x}}\right)\left(\dfrac{x\sqrt{x}-x-x+\sqrt{x}-x\sqrt{x}-x-x-\sqrt{x}}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{\left(x-1\right)^2}\right)\\ =\dfrac{\left(x-1\right).\left(-4x\right)}{2\sqrt{x}.\left(x-1\right)^2}=\dfrac{-2\sqrt{x}}{x-1}\)
b)
Với x >1, ta có:
A > -6 \(\Leftrightarrow\dfrac{-2\sqrt{x}}{x-1}>-6\Rightarrow-2\sqrt{x}>-6\left(x-1\right)\)
\(\Leftrightarrow-2\sqrt{x}+6x-6>0\\ \Leftrightarrow x-\dfrac{2}{6}\sqrt{x}-1>0\\ \Leftrightarrow x-2.\dfrac{1}{6}\sqrt{x}+\left(\dfrac{1}{6}\right)^2>1+\dfrac{1}{36}\\ \Leftrightarrow\left(\sqrt{x}-\dfrac{1}{6}\right)^2>\dfrac{37}{36}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{6}-\sqrt{x}>\dfrac{\sqrt{37}}{6}\\\sqrt{x}-\dfrac{1}{6}>\dfrac{\sqrt{37}}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-\sqrt{x}>\dfrac{\sqrt{37}-1}{6}\\\sqrt{x}>\dfrac{\sqrt{37}+1}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x>\dfrac{19-\sqrt{37}}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{\sqrt{37}-19}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\)
Vậy không có x để A >-6
Bài 3:
a: \(B=\left(\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{x-4+10-x}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{x-4}\cdot\dfrac{\sqrt{x}+2}{6}\)
\(=\dfrac{-6}{x-4}\cdot\dfrac{\sqrt{x}+2}{6}=\dfrac{-1}{\sqrt{x}-2}\)
b: Để B>0 thì \(\sqrt{x}-2< 0\)
=>0<x<4
Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn
Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy
cj hãy xem tư duy toán của em nhé: muốn tính đg trung bình, cần bit cạnh a, đề cho tg đều và s thì quá đủ đk r
S = a2 \(\sqrt{3}\)/4 = 9căn3/4 => a = 3 quá đơn giản
đg trug bình = a/2 = 3/2 = 1,5cm chắc chắn đúng
tuy không hiểu cái gì về toán của mấy lớp trên nhưng thấy bạn giải rất hợp lí
Để D đạt GTNN
=>\(3+\sqrt{9-4x^2}\) đạt GTLN
Ta thấy: \(-4x^2\le0\)
\(\Rightarrow9-4x^2\le9\)
\(\Rightarrow\sqrt{9-4x^2}\le\sqrt{9}=3\)
\(\Rightarrow3+\sqrt{9-4x^2}\le3+3=6\)
\(\Rightarrow Min_D=\frac{2}{6}=\frac{1}{3}\) khi x=0
Vậy \(Min_D=\frac{1}{3}\) khi x=0
Nhận xét : D > 0
Để D đạt giá trị nhỏ nhất thì \(3+\sqrt{9-4x^2}\) đạt giá trị lớn nhất \(\Leftrightarrow\sqrt{9-4x^2}\) đạt giá trị lớn nhất
Mà ta có : \(-4x^2\le0\Leftrightarrow-4x^2+9\le9\Leftrightarrow\sqrt{9-4x^2}\le3\)
=> Max \(\left(3+\sqrt{9-4x^2}\right)=6\) . Dấu "=" xảy ra khi x = 0
Vậy Min D \(=\frac{2}{6}=\frac{1}{3}\) <=> x = 0
4, a, Ta co: BC = BH + HC = 10cm
Vì \(\Delta ABC\) vuông tại A có AH là đường cao tương ứng với cạnh huyền BC
=> \(AB^2=BH.BC=3,6.10=36\)
=> \(AB=\sqrt{36}=6cm\)
Ta co: \(AC^2=HC.BC=6,4.10=64\)
=> \(AC=\sqrt{64}=8cm\)
Ta co: AB.AC = BC.AH
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\)