Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đối với lớp 8 cái này khó; giải theo cách bình thường nha
+) Giả sử \(abc\) không chia hết cho 3 \(\Rightarrow a;b;c\) không chia hết cho 3
\(\Rightarrow a^2;b^2;c^2\)chia 3 dư 1 \(\Rightarrow a^2+b^2\) chia 3 dư 2
Mà \(c^2\) chia 3 dư 1 nên \(a^2+b^2\ne c^2\) => Điều giả sử sai
Vậy \(abc⋮3\) (1)
+) Giả sử \(abc\) không chia hết cho 4 \(\Rightarrow a;b;c\) không chia hết cho 4
\(\Rightarrow\)\(a^2;b^2;c^2\)chia 4 dư 1 \(\Rightarrow a^2+b^2\) chia 4 dư 2
Mà \(c^2\)chia 4 dư 1 nên \(a^2+b^2\ne c^2\)=> Điều giả sử sai
Vậy \(abc⋮4\)(2)
+) +) Giả sử \(abc\) không chia hết cho 5 \(\Rightarrow a;b;c\) không chia hết cho 5
\(\Rightarrow a^2;b^2;c^2\) chia 5 dư 1;4 \(\Rightarrow a^2+b^2\) chia hết cho 5
Mà \(c^2\)chia 5 dư 1;4 nên \(a^2+b^2\ne c^2\) => Điều giả sử sai
Vậy \(abc⋮5\)(3)
Mà (3;4;5) = 1 nên từ (1);(2);(3) \(\Rightarrow abc⋮60\)(đpcm)
Ta có; 60 = 3.4.5
Đặt M = abc
Nếu a, b, c đều không chia hết cho 3 => a2, b2 và c2 chia hết cho 3 đều dư 1=> a2 khác b2 + c2 .Do đó có ít nhất 1 số chia hết cho 3. Vậy M \(⋮\)3
Nếu a, b, c đều không chia hết cho 5 => a2, b2 và c2 chia 5 dư 1 hoặc 4
=> b2 + c2 chia 5 thì dư 2; 0 hoặc 3.
=> a2 khác b2 + c2. Do đó có ít nhất 1 số chia hết cho 5. Vậy M \(⋮\) 5
Nếu a, b, c là các số lẻ => b2 và c2 chia hết cho 4 dư 1.
=> b2 + c2 = 4 dư 1 => a2 khác b2 + c2
Do đó 1 trong 2 số a, b phải là số chẵn
Giả sử b là số chẵn
Nếu c là số chẵn => M \(⋮\) 4
Nếu c là số lẻ mà a2 = b2 + c2 => a là số lẻ
\(\Rightarrow b^2=\left(a-c\right)\left(a+b\right)\Rightarrow\left(\frac{b}{2}\right)^2=\left(\frac{a+c}{2}\right)\left(\frac{a-c}{2}\right)\)
\(\Rightarrow\frac{b}{2}\)chẵn \(\Rightarrow b⋮4\Rightarrow M⋮4\)
Vậy M = abc \(⋮\)3 . 4. 5 = 60
câu 1
a, 5x - x 2 + 2xy - 5y
= 5x - x 2 + xy + xy - 5y
= ( 5x - 5y ) - ( x2 - xy ) + xy
= 5 ( x-y ) - x(x-y ) + xy
= (5-x) ( x-y) + xy
mik làm dc mỗi câu a !
Tìm x , y ; biết :
1. x2 + 4y + 4y2 + 26 - 10x = 0
2. 4y2 + 34 - 10x + 12y + x2 =0
Giúp mk với khó quá
Lấy pt (2) - pt (1) ta có:
8y + 8 = 0
=> y = -1
Thay y = -1 vào pt (1) ta có:
x2 - 10x + 26 = 0
( Giải phương trình bậc 2 bằng máy tính casio )
Ta được: x là số phức => phương trình vô nghiệm
=> Không tìm được cặp x,y thảo mãn hệ phương trình trên.
\(2P=2x^2+2y^2-2xy-2x+2y+2\)
= (x2 - 2xy + y2) + \(\frac{4}{3}\)(y - x) + \(\frac{4}{9}\)+ (x2 - \(\frac{2}{3}\)x + \(\frac{1}{9}\)) + (y2 + \(\frac{2}{3}\)y + \(\frac{1}{9}\)) + \(\frac{4}{3}\)
= (y - x + \(\frac{2}{3}\))2 + (x - \(\frac{1}{3}\))2 + (y + \(\frac{1}{3}\))2 + \(\frac{4}{3}\)\(\ge\frac{4}{3}\)
\(\Rightarrow P\ge\frac{2}{3}\)
Vậy GTNN là \(\frac{2}{3}\)đạt được khi x = \(\frac{1}{3}\); y = - \(\frac{1}{3}\)
Nhiều quá không muốn giải. Bạn chọn đi. Mình giúp bạn giải 1 câu (bạn thích câu nào mình giải câu đó cho ) :D
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)
Do \(a+b+c\ne0\) nên \(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-bc+c^2\right)+\left(c^2-ca+a^2\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)
\(\Rightarrow\)\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
...
Đặt 1-a =x \(\ge0\) ; 1 -b =y\(\ge0\) ; 1 - c =z\(\ge0\)
=> a+b+c =2 <=> x+y+z =1
\(a^2+b^2+c^2=\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=3-2\left(x+y+z\right)+\left(x^2+y^2+z^2\right)\)
\(=1+\left(x^2+y^2+z^2\right)=1+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le2\)
dấu = xay ra khi x =y =0; z =1 hoặc x=z =0 ; y =1 hoạc y=z =0 ; x =1
hay a=b =1; c =0 hoạc ..................................................
Với a,b,c ko âm
a^2 = b^2 + c^2 (1)
=> a^2 = (b+c)^2 - 2bc
=> a^2 <= (b+c)^2
=> a <= b+c (2)
Nhân (1) với (2), vế theo vế ta có:
a^3 = b^3 + c^3 + bc(b+c)
=> a^3 >= b^3 + c^3
Bạn xem lại câu b có thiếu gì ko nhé!!!
a) Xét \(a^2+b^2-2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(ĐPCM)
c) Xét \(a^2+b^2+2-2\left(a+b\right)=\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\)
\(=\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)(ĐPCM)
ai h minh minh h lai cho
Do là hơi dài, có tới 10 số 0, cho nên mik bỏ mấy cái số 0 nha vì đều là 10 số, có gì bạn ghi thêm 10 số
\(A=\)\(\frac{2,4}{1,4\cdot2}\)\(+\)\(2,2\)
\(B=\)\(\frac{2,2}{1,2\cdot2}\)\(+\)\(2,2\)
\(\text{Hạng tử thứ 2 đã = nhau giờ thì xét Hạng tử 1}\)
\(\frac{2,4}{1,4\cdot2}\)\(=\)\(\frac{2,4}{2,8}=1-\frac{0,4}{2,8}\)
\(\frac{2,2}{1,2\cdot2}=\frac{2,2}{2,4}=1-\frac{0,2}{2,4}=1-\frac{0,4}{4,8}\)
\(\frac{0,4}{2,8}>\frac{0,4}{4,8}\)
suy ra hạng tử của A < B
\(A< B\)