Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a)
Có A=\(33^{44}=3^{44}\cdot11^{44}=\left(3^4\right)^{11}\cdot11^{44}\)
B= \(44^{33}=4^{33}\cdot11^{33}=\left(4^3\right)^{11}\cdot11^{33}\)
Vì \(3^4>4^3\)=> \(\left(3^4\right)^{11}>\left(4^3\right)^{11}\)
mà \(11^{44}>11^{33}\)
=> \(\left(3^4\right)^{11}+11^{44}>\left(4^3\right)^{11}+11^{33}\)
=>\(33^{44}>44^{33}\)
=> A > B
Bài 1:
ta có 3^3 = 27 chia 13 dư 1
=> (3^3)^670 = 3^ 2010 chia 13 dư 1 (1)
5^2 = 25 chia 13 dư (-1)
=> (5^2)^1005 chia 13 dư (-1)^ 1005 = (-1) (2)
Từ (1); (2)
=> 3^2010+5^2010 chia 13 dư 1 + (-1) = 0
hay 3^2010+5^2010 chia hết cho 13.
bài 1:
Ta có
32010=(33)670≡1670(mod13)32010=(33)670≡1670(mod13)
Mà 52010=(52)1005≡(−1)1005(mod13)52010=(52)1005≡(−1)1005(mod13)
Từ đó suy ra 32010+5201032010+52010 chia hết cho 13
a) Ta có n.(n+1).(n+2) là 3 số tự nhiên liên tiếp và các số chia hết cho 6 là các số chia hết cho 2 và 3.
- n.(n+1).(n+2) chia hết cho 2.
+ Nếu n là số lẻ thì n + 1 là số chẵn => n.(n+1).(n+2) chia hết cho 2.
+ Nếu n là số chẵn => n.(n+1).(n+2) chia hết cho 2.
Vậy n.(n+1).(n+2) chia hết cho 2 với mọi n.
- n.(n+1).(n+2) chia hết cho 3.
+ Nếu n chia hết cho 3 => n.(n+1).(n+2) chia hết cho 3.
+ Nếu n chia 3 dư 1 thì n + 2 chia hết cho 3 => n.(n+1).(n+2) chia hết cho 3.
+ Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => n.(n+1).(n+2) chia hết cho 3.
Vậy n.(n+1).(n+2) chia hết cho 3 với mọi n.
Vì n.(n+1).(n+2) chia hết cho 2 và 3 => n.(n+1).(n+2) chia hết cho 6.
b) A = 19208+1 / 19200+ 1. Vì 19208 > 19200 và 1 = 1 => 19208+1 > 19200+ 1 => A > 1 (vì tử lớn hơn mẫu)
B= 19200+1/ 19210 +1 . Vì 19200 > 19210 và 1 = 1 => 19200 + 1 < 19210 + 1 => B < 1 (vì tử bé hơn mẫu)
Vì A > 1 , B < 1 => A > B. ( tính chất bắt cầu)