K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: Xét ΔOAH và ΔOBH có

OA=OB

\(\widehat{AOH}=\widehat{BOH}\)

OH chung

Do đó: ΔOAH=ΔOBH

b: Xét ΔOBN và ΔOAM có

\(\widehat{OBN}=\widehat{OAM}\)

OB=OA

góc BON chung

Do đó: ΔOBN=ΔOAM

c: Ta có: OA=OB

HA=HB

Do đó: OH là đường trung trực của AB

hay OH\(\perp\)AB

 

Bài 2: 

a: Xét ΔOAH và ΔOBH có

OA=OB

\(\widehat{AOH}=\widehat{BOH}\)

OH chung

Do đó: ΔOAH=ΔOBH

b: Xét ΔOBN và ΔOAM có

\(\widehat{OBN}=\widehat{OAM}\)

OB=OA

góc BON chung

Do đó: ΔOBN=ΔOAM

c: Ta có: OA=OB

HA=HB

Do đó: OH là đường trung trực của AB

hay OH\(\perp\)AB

 

2 tháng 11 2017

\(P=\sqrt{\left(x-\dfrac{3}{4}\right)^2}+\dfrac{1}{4}\)

\(=\left|x-\dfrac{3}{4}\right|+\dfrac{1}{4}\)

Ta có : \(\left|x-\dfrac{3}{4}\right|\ge0\forall x\Rightarrow\left|x-\dfrac{3}{4}\right|+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)

\(\Rightarrow P\ge\dfrac{1}{4}\)

Dấu "=" xảy ra

\(\Leftrightarrow x-\dfrac{3}{4}=0\Leftrightarrow x=\dfrac{3}{4}\)

Vậy GTNN của P là \(\dfrac{1}{4}\) khi x = \(\dfrac{3}{4}\)

2 tháng 11 2017

cảm ơn..........vuivuivuivui

27 tháng 10 2017

\(a,x^2-113=31\\ \Leftrightarrow x^2=144\\ \Leftrightarrow x=\pm12\\ Vay...\\ b,\sqrt{x+2,29}=2.3\\ \Leftrightarrow x+2,29=6^2\\ x=36-2,29=33,71\\ c,x^4=256\\ \Leftrightarrow x=\pm4\\ Vay...\\ d,\left(\sqrt{x}-1\right)^2=0,5625\\ \Leftrightarrow\sqrt{x}-1\in\left\{-0,75;0,75\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0,25;1,75\right\}\\ Vay...\\ e,2\sqrt{x}-x=0\\ \Leftrightarrow\sqrt{x}\left(2-\sqrt{x}\right)=0\\ \Leftrightarrow\sqrt{x}=0hoac2-\sqrt{x}=0\\ \Leftrightarrow x=0hoacx=4\\ f,x+\sqrt{x}=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0hoacx=1\)

27 tháng 10 2017

a. x2113=31

=> x2=144

=> x2=\(\sqrt{144}\)

=> x=\(\pm12\)

c.x4=256

=> x4=44

=> x=\(\pm4\)

5 tháng 9 2017

a/ \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{3}=0\)

\(\Leftrightarrow\left|x+\dfrac{3}{4}\right|=\dfrac{1}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=-\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)

Vậy ..............

b, \(\dfrac{-12}{-37}=\dfrac{12}{37}< \dfrac{12}{36}=\dfrac{13}{39}< \dfrac{13}{38}\)

\(\Leftrightarrow\dfrac{13}{38}>\dfrac{-12}{-37}\)

a)\(\text{|}x+\dfrac{3}{4}\text{|}-\dfrac{1}{3}=0\)

=>\(\text{|}x+\dfrac{3}{4}\text{|}=\dfrac{1}{3}\)

=>\(x+\dfrac{3}{4}=-\dfrac{1}{3}\)hoặc\(x+\dfrac{3}{4}=\dfrac{1}{3}\)

=>\(x=-\dfrac{13}{12}\)hoặc\(x=-\dfrac{5}{12}\)

Vậy...

b)\(\dfrac{13}{38}\)\(\dfrac{-12}{-37}\)

Ta có:\(\dfrac{-12}{-37}=\dfrac{12}{37}< \dfrac{12}{36}=\dfrac{1}{3}=\dfrac{13}{39}< \dfrac{13}{38}\)

=>\(\dfrac{13}{38}>\dfrac{-12}{-37}\)

9 tháng 7 2017

https://hoc24.vn/hoi-dap/question/244716.html đây nhé bn

9 tháng 7 2017

tớ k cop đc rồi, xl nhé, tớ sẽ gửi qua tn

23 tháng 4 2017

Giải:

Do \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)\) \(=2015\)

Nên \(2016a+13b-1\)\(2016^a+2016a+b\) là 2 số lẻ \((*)\)

Ta xét 2 trường hợp:

Trường hợp 1: Nếu \(a\ne0\) thì \(2016^a+2016a\) là số chẵn

Do \(2016^a+2016a+b\) lẻ \(\Rightarrow b\) lẻ

Với \(b\) lẻ \(\Rightarrow13b-1\) chẵn do đó \(2016a+13b-1\) chẵn (trái với \((*)\))

Trường hợp 2: Nếu \(a=0\) thì:

\(\left(2016.0+13b-1\right)\left(2016^0+2016.0+b\right)\) \(=2015\)

\(\Leftrightarrow\left(13b-1\right)\left(b+1\right)=2015=1.5.13.31\)

Do \(b\in N\Rightarrow\left(13b-1\right)\left(b+1\right)=5.403=13.155\) \(=31.65\)

\(13b-1>b+1\)

\(*)\) Nếu \(b+1=5\Rightarrow b=4\Rightarrow13b-1=51\) (loại)

\(*)\) Nếu \(b+1=13\Rightarrow b=12\Rightarrow13b-1=155\) (chọn)

\(*)\) Nếu \(b+1=31\Rightarrow b=30\Rightarrow13b-1=389\) (loại)

Vậy \(\left(a,b\right)=\left(0;12\right)\)

25 tháng 10 2017

\(s=\)\(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{9\cdot11}\)

=\(\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+..+\dfrac{1}{9}-\dfrac{1}{11}\right)\)

=\(\dfrac{1}{2}\cdot\left(1-\dfrac{1}{11}\right)\)

=\(\dfrac{1}{2}\cdot\dfrac{10}{11}\)

=\(\dfrac{5}{11}\)

25 tháng 10 2017

cảm ơn bạn nhiều lắm

hihi

2 tháng 3 2017

Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)

Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)

Dấu \("="\) xảy ra khi:

\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)

Vậy \(1\le x\le5.\)

2 tháng 3 2017

Cho mk thêm cái ạ:

\(x\in\left\{1;2;3;4;5\right\}\)

Vậy \(x\in\left\{1;2;3;4;5\right\}\)

b: |2x-1|<5

=>2x-1>-5 và 2x-1<5

=>2x>-4 và 2x<6

=>-2<x<3

mà x là số nguyên dương

nên \(x\in\left\{1;2\right\}\)