Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))
Lời giải:
Ta có \(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+\frac{1}{4ab}+4ab\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\geq \frac{4}{a^2+b^2+2ab}=\frac{4}{(a+b)^2}\geq 4\)
Áp dụng BĐT AM-GM: \(\frac{1}{4ab}+4ab\geq 2\).
Và \(1\geq a+b\geq 2\sqrt{ab}\rightarrow ab\leq \frac{1}{4}\)
Do đó \(P\geq 4+1+2=7\) hay \(P_{\min}=7\)
Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)
1. a) Ta có :A=99...9000...0+25(n chữ số 9,n +2 chữ số 0)
Đặt a=11...1(n chữ số 1 ) suy ra : 10n=9a+1.Khi đó :
A=9a.(9a+1).100+25=8100a2+900a+25=(90a+5)2=99...952
2.a)
Ta có :A=11...1\(\times\)10n+11...1-22...2(n chữ số 1 ,n chữ số 2)
Đặt a=11...1 (n chữ số 1) suy ra 10n=9a+1,22...2=2a.Khi đó :
A=(a(9a+1)+a)-2a=9a2=(3a)2=33...32(n chữ số 3)
b)Tương tự :B=a(9a+1)+a+4a+1=9a2+6a+1=(3a+1)2=33..342(n -1 chữ số 3)
Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)(Tự chứng minh BĐT này )
\(B\ge\dfrac{4}{\left(a+b\right)^2+1}\)
cảm ơn Định đã trả lời giúp mk . Nhưng bn làm sai rồi vì nếu làm như vậy sẽ ko tìm ra a, b
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne1\end{matrix}\right.\)
\(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{1-\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
b: \(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\)
Khi \(x=\left(2-\sqrt{3}\right)^2\) thì
\(P=\dfrac{2}{\left(2-\sqrt{3}\right)^2+\sqrt{\left(2-\sqrt{3}\right)^2}+1}\)
\(P=\dfrac{2}{7-4\sqrt{3}+2-\sqrt{3}+1}\)
\(=\dfrac{2}{10-5\sqrt{3}}=\dfrac{4+2\sqrt{3}}{5}\)
c: P>=2/3
=>P-2/3>=0
=>\(\dfrac{2}{x+\sqrt{x}+1}-\dfrac{2}{3}>=0\)
=>\(\dfrac{1}{x+\sqrt{x}+1}-\dfrac{1}{3}>=0\)
=>\(\dfrac{3-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}>=0\)
=>\(-x-\sqrt{x}+2>=0\)
=>\(x+\sqrt{x}-2< =0\)
=>\(\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)< =0\)
=>\(\sqrt{x}-1< =0\)
=>0<=x<=1
Kết hợp ĐKXĐ, ta được: 0<=x<1