K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2016

Ta có :

A = 3n + 9/n - 4

A = 3n - 12 + 21/n - 4

A = 3 x ( n - 4 )/n - 4 + 21/n - 4

A = 3 x ( n- 4 )/n - 4 + 21/n - 4

A = 3 + 21/n -4

Để A nguyên thì 21/n - 4 nguyên

=> 21 chia hết cho n - 4

=> n - 4 thuộc Ư ( 21 )

=> n - 4 thuộc ( 1 ; -1 ; -3 ; -7 ; 21 ; -21 )

=> n thuộc ( 5 ; 3 ; 7 ; 1 ; 11 ; -3 ; 15 ; -17 )

K nha mọi người !!

26 tháng 8 2016

Ta có:

A = 3n + 9/n - 4

A = 3n - 12 + 21/n - 4

A = 3.(n - 4) + 21/n - 4

A = 3.(n - 4)/n - 4 + 21/n - 4

A = 3 + 21/n - 4

Để A nguyên thì 21/n - 4 nguyên

=> 21 chia hết cho n - 4

=> n - 4 thuộc Ư(21)

=> n - 4 thuộc {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}

=> n thuộc {5 ; 3 ; 7 ; 1 ; 11 ; -3 ; 25 ; -17}

22 tháng 10 2017

-7 nha bạn

-7 nha bạn

-7 nha bạn

22 tháng 10 2017

 Muốn A có giá trị nguyên thì 3n + 9 phải chia hết cho n - 4

=> 3n - 12 + 21 chia hết cho n - 4 

3n - 12 chia hết cho n - 4 với mọi n . Vậy 21 chia hết cho n - 4

=> n - 4 là Ư(21)

=> n-4 là Ư( 1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21 } 

Xét n - 4 = 1

      n = 1 + 4 = 5

Xét n - 4 = -1

      n = -1 + 4 = 3

Xét n - 4 = 3

      n = 3 + 4 = 7

Xét n - 4 = -3

       n = -3 + 4 = 1

Xét n - 4 = 7

       n = 7 + 4 = 11

Xét n - 4 = -7

       n = -7 + 4 = -3

Xét n - 4 = 21

      n = 21 + 4

      n = 25

Xét n - 4 = -21

      n = -21 + 4 = -17

Vậy n { 5 ; 3 ; 7 ; 1 ; 11 ; -3 ; 25 ; -17 }

Với n = 5 , ta có giá trị A = 24

Với n = 3 , ta có giá trị A = -18

Với n = 7 , ta có giá trị A = 10

Với n = 1 , ta có giá trị A = -4

Với n = 11 , ta có giá trị A = 6

Với n = -3 ; ta có giá trị A = 0

....

18 tháng 7 2017

a) A = \(\frac{3n+9}{n-4}\)\(\frac{3\left(n-4\right)+21}{n-4}\)= 3 + \(\frac{21}{n-4}\)

Để A là số nguyên , n-4 phải là ước của 21. Ta được :

n-4-21-7-3-113721
n-17-313571125
A20-4-1824106

4

b) Biến đổi : B = 3 + \(\frac{8}{2n-1}\)

2n-1 là ước lẻ của 8 .

 Đáp số :

n10
B11-5
16 tháng 9 2017

2n - 1 là ước lệ của 8 đó !

Đáp số : ....

tk tớ nha

8 tháng 7 2016

\(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)

\(\Rightarrow n-4\inƯ\left(21\right)\Rightarrow n-4\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

\(\Rightarrow n\in\left\{-17;3;1;3;5;7;11;25\right\}\)

( giá trị là chỗ n-4 \(\in\){ -21;-7;...;21 } rồi + 3 nha bạn )

\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{-1;1\right\}\)( vì 2n - 1 là số lẻ )

\(\Rightarrow n\in\left\{0;1\right\}\)

( giá trị là chỗ 2n-1 \(\in\){ -1;1 } rồi + 3 nha bạn )

8 tháng 7 2016
  • \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)

Để A nguyên thì \(\frac{21}{n-4}\) nguyên

=>21 chia hết cho n-4

=>n-4\(\in\)Ư(21)

=>n-4\(\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

=>n\(\in\left\{-17;-3;1;3;5;7;11;25\right\}\)(1)

  • \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)

Để B nguyên thì \(\frac{8}{2n-1}\) nguyên

=>8 chia hết cho 2n-1

=>2n-1\(\in\)Ư(8)

=>2n-1\(\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

=>2n\(\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)

=>n\(\in\left\{\frac{-7}{2};\frac{-3}{2};\frac{-1}{2};0;1;\frac{3}{2};\frac{5}{2};\frac{9}{2}\right\}\)

Vì n là số nguyên nên n\(\in\left\{0;1\right\}\)(2)

Từ (1) và (2) => n=1 thì A và B nguyên

n=1 => \(A=3+\frac{21}{n-4}=3+\frac{21}{1-4}=3+\frac{21}{-3}=3+\left(-7\right)=-4\)

           \(B=3+\frac{8}{2n-1}=3+\frac{8}{2.1-1}=3+\frac{8}{1}=3+8=11\)

Kết luận:n=1 thì A=-4 và B=11

4 tháng 12 2017

Ta có:A=\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)

Để A nguyên thì \(\frac{5}{n-1}\in Z\Rightarrow n-1\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)

\(\Rightarrow n\in\left\{-4,0,2,6\right\}\)

Vậy............

4 tháng 12 2017

Ta có : A= (3n+2)/(n-1)

= [3.( n-1)+5]/(n-1)

=3+[5/(n-1)]

Để A nguyên thì 5 phải chia hết cho n-1

=> n-1 thuộc ước của 5

Ta có bảng sau

x-11-15-5
x206-4

Vậy x\(\in\){ -4 ; 0 ; 2 ; 6 }

2 tháng 1 2022

Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)

bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.

a: để P là số nguyên thì \(3n-3+5⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

b: Để Q là số nguyên thì \(3\left|n\right|-1+2⋮3\left|n\right|-1\)

\(\Leftrightarrow3\left|n\right|-1\in\left\{1;-1;2\right\}\)

\(\Leftrightarrow\left|n\right|\in\left\{0;1\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

8 tháng 8 2020

Bg

a) Ta có: A = \(\frac{4n+1}{3n+1}\)    (n thuộc Z)

Để A thuộc Z thì 4n + 1 \(⋮\)3n + 1

=> 4.(3n + 1) - 3.(4n + 1) \(⋮\)3n + 1

=> 12n + 4 - (12n + 3) \(⋮\)3n + 1

=> 12n + 4 - 12n - 3 \(⋮\)3n + 1

=> (12n - 12n) + (4 - 3) \(⋮\)3n + 1

=> 1 \(⋮\)3n + 1

=> 3n + 1 thuộc Ư(1)

Ư(1) = {1; -1}

=> 3n + 1 = 1 hay -1

=> 3n = 1 - 1 hay -1 - 1

=> 3n = 0 hay -2

=> n = 0 ÷ 3 hay -2 ÷ 3

=> n = 0 hay -2/3

Mà n thuộc Z

=> n = 0

Vậy n = 0 thì A nguyên