K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2020

102018+5=100..05(2017 số 0)

vì tận cùng là số 5 nên tổng 102018+5 chia hết cho 5

Tổng các chữ số: 1+0.2017+5=6

=>tổng 102018+5 chia hết cho 3

29 tháng 12 2020

ta có : 102018+5= 100...005(có 2017 chữ số 0)

ta thấy 100...005 (có 2017 chữ số 0)  có chữ số tận cùng là 5 nên chia hết cho 5

và 100...005(có 2017 chữ số 0) có tổng các chữ số là: 1+0+0+......+0+0+5=6 chia hết cho 3

                                                                                           2017 chữ số 0

28 tháng 12 2020

Ta có : 20085 + 20086

= 20085(1 + 2008)

= 20085.2009 \(⋮\)2009 (đpcm)

=> 20085 + 20086  \(⋮\)2009 

31 tháng 8 2017

Số số hạng: (99-0):1+1=99(số hạng)

1+5+5^2+...+5^99=(1+5+5^2)+5^3x(1+5+5^2)+5^6x(1+5+5^2)+...+5^97x(1+5+5^2)      [vì có 99 số hạng chia hết cho 3]

                          =31+5^3x31+5^6x31+...+5^97x31=(1+5^3+5^6+...+5^97)x31 chia hết cho 31.

31 tháng 8 2017

Số số hạng là :

( 99 - 0 ) : 1 + 1 = 99 ( số hạng )

\(1+5+5^2\)\(+...+5^{99}\)\(=\)\(\left(1+5+5^2\right)+5^3\)\(.\)\(\left(1+5+5^2\right)\)\(+\)\(5^6\)\(.\)\(\left(1+5+5^2\right)\)\(+...+\)\(5^{99}\)\(.\)\(\left(1+5+5^2\right)\)      ( Vì có 99 số hạng chia hết cho 3 )

\(\Rightarrow\)\(31+5^3\)\(.\)\(31\)\(+\)\(5^6\)\(.\)\(31\)\(+...+\)\(5^{99}\)\(.\)\(31\)

\(=\)\(1+5+5^2\)\(+...+\)\(5^{99}\)\(.\)\(31\)chia hết cho \(31\)

15 tháng 11 2016

5/s hay là5,s vậy

15 tháng 11 2016

S = 1 + 2 + 22 + 23 +24 + 25 +...+ 260 + 261 + 262 + 263

   = ( 1 + 22) +( 2 + 23) + (24 + 26) + ( 25 + 27) +...+ (260 + 262) + ( 261 + 263)

   =( 1 + 22) + 2 ( 1 + 22) + 2(1 + 22) + 25 (1 +22)+...+ 260 ( 1 + 22) + 261( 1 + 22)

   = ( 1 + 22)( 1 + 2 +24 + 25 +...+ 260)

   =  5 ( 1 + 2 +24 + 25 +...+ 260

Vậy S chia hết cho 5 vì có một thừa số là 5.

29 tháng 11 2016

1.

\(A=7+7^2+7^3+...+7^{78}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)

\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)

\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)

\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8

Vậy A chia hết cho 8 (đpcm)

 

 

29 tháng 11 2016

\(A=3+3^2+3^3+...+3^{155}\)

\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)

\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)

\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121

Vậy A chia hết cho 121 (đpcm)

13 tháng 8 2017

\(K=2+2^2+2^3+...+2^{20}\)

\(2K=2^2+2^3+2^4+...+2^{21}\)

\(\Rightarrow K=2K-K=2^{21}-2=2097150⋮93\)

=> K chia hết cho 93

13 tháng 8 2017

Ta có: 93=31*3

Bạn cm K chia hết cho 31 và 3

Vào Câu hỏi của friend forever II Lê Tiến Đạt

15 tháng 10 2017

a/ \(10^n-1=100...00-1=999...99\)

Trong đó có 00....00 có n chữ số 0 và n-1 chữ số 9

\(\Leftrightarrow\left(10^n-1\right)⋮9\)

b/ \(10^n+8=100....00+8=100....08\)

Trong đó có 000...00 có n chữ số 0 

\(\Leftrightarrow\left(10^n+8\right)⋮9\)

18 tháng 12 2018

Ta có 5^2020+5^2019+5^2018 = 5^2018*(5^2+5^1+1)

    =5^2018*31 chia hết cho 31.

18 tháng 12 2018

\(5^{2020}+5^{2019}+5^{2018}\)

\(=5^{2018}.25+5^{2018}.5+5^{2018}\)

\(=5^{2018}.\left(25+5+1\right)=5^{2018}.31⋮31\)