Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng: (99-0):1+1=99(số hạng)
1+5+5^2+...+5^99=(1+5+5^2)+5^3x(1+5+5^2)+5^6x(1+5+5^2)+...+5^97x(1+5+5^2) [vì có 99 số hạng chia hết cho 3]
=31+5^3x31+5^6x31+...+5^97x31=(1+5^3+5^6+...+5^97)x31 chia hết cho 31.
Số số hạng là :
( 99 - 0 ) : 1 + 1 = 99 ( số hạng )
\(1+5+5^2\)\(+...+5^{99}\)\(=\)\(\left(1+5+5^2\right)+5^3\)\(.\)\(\left(1+5+5^2\right)\)\(+\)\(5^6\)\(.\)\(\left(1+5+5^2\right)\)\(+...+\)\(5^{99}\)\(.\)\(\left(1+5+5^2\right)\) ( Vì có 99 số hạng chia hết cho 3 )
\(\Rightarrow\)\(31+5^3\)\(.\)\(31\)\(+\)\(5^6\)\(.\)\(31\)\(+...+\)\(5^{99}\)\(.\)\(31\)
\(=\)\(1+5+5^2\)\(+...+\)\(5^{99}\)\(.\)\(31\)chia hết cho \(31\)
S = 1 + 2 + 22 + 23 +24 + 25 +...+ 260 + 261 + 262 + 263
= ( 1 + 22) +( 2 + 23) + (24 + 26) + ( 25 + 27) +...+ (260 + 262) + ( 261 + 263)
=( 1 + 22) + 2 ( 1 + 22) + 24 (1 + 22) + 25 (1 +22)+...+ 260 ( 1 + 22) + 261( 1 + 22)
= ( 1 + 22)( 1 + 2 +24 + 25 +...+ 260)
= 5 ( 1 + 2 +24 + 25 +...+ 260)
Vậy S chia hết cho 5 vì có một thừa số là 5.
1.
\(A=7+7^2+7^3+...+7^{78}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)
\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)
\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8
Vậy A chia hết cho 8 (đpcm)
\(A=3+3^2+3^3+...+3^{155}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)
\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)
\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121
Vậy A chia hết cho 121 (đpcm)
\(K=2+2^2+2^3+...+2^{20}\)
\(2K=2^2+2^3+2^4+...+2^{21}\)
\(\Rightarrow K=2K-K=2^{21}-2=2097150⋮93\)
=> K chia hết cho 93
Ta có: 93=31*3
Bạn cm K chia hết cho 31 và 3
Vào Câu hỏi của friend forever II Lê Tiến Đạt
a/ \(10^n-1=100...00-1=999...99\)
Trong đó có 00....00 có n chữ số 0 và n-1 chữ số 9
\(\Leftrightarrow\left(10^n-1\right)⋮9\)
b/ \(10^n+8=100....00+8=100....08\)
Trong đó có 000...00 có n chữ số 0
\(\Leftrightarrow\left(10^n+8\right)⋮9\)
Ta có 5^2020+5^2019+5^2018 = 5^2018*(5^2+5^1+1)
=5^2018*31 chia hết cho 31.
\(5^{2020}+5^{2019}+5^{2018}\)
\(=5^{2018}.25+5^{2018}.5+5^{2018}\)
\(=5^{2018}.\left(25+5+1\right)=5^{2018}.31⋮31\)
102018+5=100..05(2017 số 0)
vì tận cùng là số 5 nên tổng 102018+5 chia hết cho 5
Tổng các chữ số: 1+0.2017+5=6
=>tổng 102018+5 chia hết cho 3
ta có : 102018+5= 100...005(có 2017 chữ số 0)
ta thấy 100...005 (có 2017 chữ số 0) có chữ số tận cùng là 5 nên chia hết cho 5
và 100...005(có 2017 chữ số 0) có tổng các chữ số là: 1+0+0+......+0+0+5=6 chia hết cho 3
2017 chữ số 0