K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

a)Xét tứ giác ABDC : 
AM = MD ; BM = MC 
=>Tứ giác ABDC là hình bình hành 
Mà góc BAC = 90 = >Tứ giác ABDC là hcn 
b)Xét tam giác AID : 
AH= HI ; AM = MD (gt) 
=> HM song song ID ( đường tb) 
=>tứ giác BIDC la ht 
AC la trung truc AI = > tam giac ABI can tai B 
=> AB = BI ma AB = DC ( ABDC la hcn )=> BI = DC 
hay BIDC la hinh thang can 
c) Ta có góc ACB = góc AHM = góc AEF 
góc BAM = góc ABM 
mà góc ABM + góc ACM = 90 => góc AEF + góc BAM = 90 độ hay AM vuông góc EF ( đccm)

19 tháng 12 2016

tks bn

20 tháng 12 2016

Câu c có sai k v bạn??

20 tháng 12 2016

a) Xét tứ giác ABCD có:

. M là trung điểm của BC ( AM là đường trung tuyến)

. M là tđ của AD ( gt)

Vậy: ABCD là hbh ( tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường)

\(\widehat{BAC}\) = 900 ( \(\Delta\) ABC vuông tại A)

--> ABCD là hình chữ nhật ( hbh có 1 góc vuông)

b) Ta có: \(IA\perp AC\)

\(CD\perp AC\)

\(\Rightarrow\) IA // CD

Xét tứ giác BIDC có:

. IA // CD (cmt)

\(\Rightarrow\) IB // CD ( B ϵ IA )

. AB =CD ( cạnh đối hcn ABCD )

mà AB = IB ( tính chất đối xứng)

\(\Rightarrow\) IB = CD ( cùng = AB )

Vậy: BIDC là hbh ( tứ giác có 2 cạnh đối vừa //, vừa = nhau)

\(\Rightarrow\) BC // ID ( cạnh đối hbh)

" đề câu c sai nha bạn"

14 tháng 1 2016

1/. Xét Tứ giác AEHF, có:

E = 90 (EH vuong góc AB)

F = 90 (HF vuong AC)

A = 90 (ABC vuong tai A)

=> AEHF là hcn

2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC  => AM =MB = MC = 2,5 cm

=> BC = 2,5 x2 = 5cm

Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:

AB^2 +AC^2 =BC^2

9+AC^2 = 25

=> AC^2 = 25-9 = 16

=> AC =4cm

Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2

3/. Gọi K là giao điểm của EF và AM, J là giao điểm của EF và AH

CM: góc AEK = góc ABC

Vì J là giao điểm của 2 đường chéo trong hcn AEHF => ẠJ = JH = Ẹ = JF

=> tam giác EJA cân tại J => AEJ = EAH (1)

Xét tam giác vuông ABH => EAH +ABC = 90

Xét tam giác vuông ABC=> ABC + ACB = 90

=> EAH = ACB  và (1) => ACB = AEJ  (2)

Vì  AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM = BM = MC

=> tam giác ABM cân tại M => EAK = ABC (3)

Xét tam giác EAK: có: AEJ + EAK = ACB + ABC  = 90 ( do 2 và 3)

=> tam giác AEK vuong tại K 

Hay AM vuông EF

4/. Vì A đới xứng với I qua BC => AI vuông góc với BC . Mà AH vuong với BC => A. H , I thẳng hàng . hay H là trung điểm của AI

Xét tam giác AID, có: 

H là trung ddierm của AI, M là trung điểm của AD 

=> HM là đường trung bình của tam giác AID => HM // ID

=> tứ giác BIDC là hình thang

Xét tam giác ABI , có: BH vừa là đường cao vừa là đường trung tuyến => ABI cân tại B => IBH = ABH (BH là đường phân giác) (4)

Xét tứ giác ABCD có: 

M là trung điểm BC

M là trung điểm AD

M = BC giao AD

=> ABCD là hình bình hành và A = 90 => ABCD là hình chữ nhật

=> DCB = ABC (DC // AB và solle trong) (5)

Từ 4 và 5 => BCD = IBC (= ABC) => Hình thang BIDC là hình thang cân

 

 

14 tháng 1 2016

1/. Xét Tứ giác AEHF, có:

E = 90 (EH vuong góc AB)

F = 90 (HF vuong AC)

A = 90 (ABC vuong tai A)

=> AEHF là hcn

2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC  => AM =MB = MC = 2,5 cm

=> BC = 2,5 x2 = 5cm

Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:

AB^2 +AC^2 =BC^2

9+AC^2 = 25

=> AC^2 = 25-9 = 16

=> AC =4cm

Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2

3/. 

1: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

2: AM=2,5cm nên BC=5cm

=>AC=4cm

S=3x4/2=6cm2

3: 

Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

Suy ra: góc AFE=góc AHE=góc ABC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>góc MAC=góc ACB

=>góc MAC+góc EFA=90 độ

=>AM vuông góc với EF

4: 

Xét ΔADI có

H,M lần lượt là trung điểm của AI và AD

nên HM là đường trung bình

=>HM//DI

=>DI//BC

Xét ΔCIA có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCIA cân tại C

=>CI=CA=DB

=>BIDC là hình thang cân

3 tháng 12 2017

a)Xét tứ giác ABDC : 
AM = MD ; BM = MC 
=>Tứ giác ABDC là hình bình hành 
Mà góc BAC = 90 = >Tứ giác ABDC là hcn 
b)Xét tam giác AID : 
AH= HI ; AM = MD (gt) 
=> HM song song ID ( đường tb) 
=>tứ giác BIDC la ht 
AC la trung truc AI = > tam giac ABI can tai B 
=> AB = BI ma AB = DC ( ABDC la hcn )=> BI = DC 
hay BIDC la hinh thang can 
c) Ta có góc ACB = góc AHM = góc AEF 
góc BAM = góc ABM 
mà góc ABM + góc ACM = 90 => góc AEF + góc BAM = 90 độ hay AM vuông góc EF ( đpcm)

3 tháng 1 2018

a)    Tứ giác  \(AMDN\)  có  \(\widehat{A}=\widehat{M}=\widehat{N}=90^0\)

nên  \(AMDN\) là hình chữ  nhật

b)   MK SỬA LẠI ĐỀ NHA:  CM AEBD LÀ HÌNH THOI

\(\Delta ABC\)có  \(DB=DC;\)\(DM\)// \(AC\)( cùng \(\perp AB\))

\(\Rightarrow\)\(MA=MB\)

Tứ giác  \(AEBD\)có  \(MA=MB;\)\(ME=MD\)

nên  \(AEBD\)là hình bình hành

mà  \(AB\perp ED\)

nên  \(AEBD\)là hình thoi

18 tháng 12 2022

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

góc BAC=90 độ

Do đó: ABDC là hình chữ nhật

b: XétΔAID có AH/AI=AM/AD

nên HM//DI

=>DI vuông góc với IA

=>HMDI là hình thang vuông

c:A đối xứng I qua BC

nên CA=CI=BD

Xét tứ giác DIBC có

DI//BC

DB=IC

Do đó: DIBC là hình thang cân

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

nên ABDC là hình bình hành

mà góc BAC=90 độ

nên ABDC là hình chữ nhật

b,d: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

Suy ra: góc AFE=góc AHE=góc ABC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>góc MAC=góc ACB

=>góc MAC+góc EFA=90 độ

=>AM vuông góc với EF

c: Xét ΔADI có

H,M lần lượt là trung điểm của AI và AD

nên HM là đường trung bình

=>HM//DI

=>DI//BC

Xét ΔCIA có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCIA cân tại C

=>CI=CA=DB

=>BIDC là hình thang cân