K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Gọi độ dài 3 cạnh tam giác lần lượt là a,b,c.(có hay ko cx đc, vì trg hợp này đề bài cho sẵn r)(a,b,c \(\inℕ^∗\))

Do cạnh a ngắn hơn cạnh c 8cm nên c-a=8 (cm)

Độ dài 3 cạnh ta, giác tỉ lệ vs 3;4;5 nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Ap dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{8}{2}=4\)

\(\Rightarrow\hept{\begin{cases}a=4.3=12\\b=4.4=16\\c=4.5=20\end{cases}}\)

Vậy;....

28 tháng 6 2019

2. 

a, x:y:z = 5:3:4 => \(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=-\frac{121}{7}\)

\(\frac{x}{5}=-\frac{121}{7}\Rightarrow x=-\frac{605}{7}\)

\(\frac{y}{3}=\frac{-121}{7}\Rightarrow y=-\frac{363}{7}\)

\(\frac{z}{4}=-\frac{121}{7}\Rightarrow z=-\frac{484}{7}\)

Vậy ... 

b, 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\) ; 3y = 5z => \(\frac{y}{5}=\frac{z}{3}\)

=> \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số  bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=-\frac{970}{10}=-97\)

\(\frac{x}{2}=-97\Rightarrow x=-97.2=-194\)

\(\frac{y}{5}=-97\Rightarrow y=-97.5=-485\)

\(\frac{z}{3}=-97\Rightarrow z=-97.3=291\)

Vậy ...

12 tháng 3 2020

Bài 2: Gọi độ dài 3 cạnh của tam giác là a,b,c ( a,b,c>0)

chu vi của tam giác là 22 nên  a+b+c = 22

vì a, b, c tỉ lệ với 2; 4; 5 nên a/2=b/4=c/5

\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{22}{11}=2\)

suy ra a= 4; b = 8; c = 10

Bài 3: \(x:y:z=2:4:5\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{2+4+5}=\frac{22}{11}=2\)

suy ra x= 4, y=8, z=10

26 tháng 7 2017

Bài 1:

Gọi độ dài các cạnh của tam giác đó lần lượt là x;y;z ( x;y;z > 0)

Ta có: \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5};x+y+z=48\)

Áp dụng tính chất dãy tỉ số bằng nhau:

        \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=\frac{x+y+z}{4+7+5}=\frac{48}{16}=3\)

         \(\Rightarrow\frac{x}{4}=3\Rightarrow x=3.4=12\)

               \(\frac{y}{7}=3\Rightarrow y=3.7=21\)

                \(\frac{z}{5}=3\Rightarrow z=3.5=15\)

Vậy độ dài các cạnh của tam giác đó lần lượt là: 12;21;15

thank trc ^~^

31 tháng 7 2016

a) ta co: x\5=y\3=z\4 va x+2y-z=-121

      Dat: x\5=y\3=z\4=k.suy ra: x=5k;y=3k;z=4k

                                              =5k+2.(3k)-4k

                                              =5k+6k-4k

                                              =7k=-121

                                              =-121:7k=-121\7

suy ra:x\5=-121\7suy ra: -121\7.5=-605\7

          y\3=-121\7 suy ra:-121\7.3=-363\7

          z\4=-121\7 suy ra:-121\7.3=-484\7

NM
2 tháng 1 2022

a. ta có 

\(\hept{\begin{cases}2a=3b=4c\\a+b-c=21\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{4}}\\a+b-c=21\end{cases}}}\) áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{4}}=\frac{a+b-c}{\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}=\frac{21}{\frac{7}{12}}=36\)\(\Rightarrow\hept{\begin{cases}a=36:2=18\\b=36:3=12\\c=36:4=9\end{cases}}\)

b. ta có : \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\\x+z-y=20\end{cases}}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+z-y}{2+5-4}=\frac{20}{3}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{40}{3}\\y=\frac{80}{3}\\z=\frac{100}{3}\end{cases}}\)

26 tháng 7 2021

a, Ta có : \(x:y:z=5:3:4\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=-\frac{126}{7}=-18\)

\(x=-90;y=-54;z=-72\)

26 tháng 7 2021

b, \(5x=2y;3y=5z\Rightarrow\frac{x}{2}=\frac{y}{5};\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=-\frac{970}{10}=-97\)

\(x=-194;y=-485;z=-291\)

7 tháng 3 2021

Dễ:C

Vì a:b:c=2:3:4

=> Đặt a=2t, b=3t, c=4t 

Gọi diện tích tam giác đó là S.

Ta có: \(S=\dfrac{a.x}{2}=\dfrac{b.y}{2}=\dfrac{c.z}{2}\)

<=> \(2S=ax=by=cz\)

<=>2t.x=3t.y=4t.z

<=>2x=3y=4z

<=>\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)

Vậy..