Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây nè :
y=x^3+3x^2+1=(x+1)^3-3x <=>
y-3=(x+1)^3-3x-3 hay
y-3 = (x+1)^3 - 3(x+1) (*)
Nhìn vào (*) ta thấy rằng nếu chọn hệ trục tọa độ mới IXY với gốc tọa độ tại I(-1;3)
Khi đó X=x+1, Y=y-3 và hàm số trở thành Y=X^3 - 3X là hàm lẻ, đồ thị của nó (cũng chính là đồ thị hàm đã cho trong hệ tọa độ cũ) nhận I là tâm đối xứng.
Vậy tâm đối xứng của đồ thị hs đã cho là I(-1;3)
Nếu bạn đã học khảo sát hàm số bằng đạo hàm thì có cách này đơn giản hơn nhiều :
y'=3x^2+6x (nghiệm của y'=0 là hoành độ các cực trị, nhưng ta không quan tâm)
y''=6x+6 (nghiệm của y''=0 chính là hoành độ điểm uốn, cũng là tâm đối xứng)
y''=6x+6=0=>x= -1=>y=3
\(\hept{\begin{cases}\frac{y}{2}-\frac{\left(x+y\right)}{5}=0,1\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0.1\end{cases}}\)
\(\hept{\begin{cases}\frac{\left(x+y\right)}{5}=\frac{y-0,2}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)
\(\hept{\begin{cases}x+y=\frac{5y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)
\(\hept{\begin{cases}x=\frac{5y-1}{2}-\frac{2y}{2}=\frac{3y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)
Ta thay x vào biểu thức \(\frac{y}{5}-\frac{\left(x-y\right)}{2}\)ta đc
\(\frac{y}{5}-\frac{\left(\frac{3y-1}{2}-y\right)}{2}=0,1\)
\(\frac{3y-1-2y}{2}=\frac{y}{5}-\frac{0,5}{5}\)
\(\frac{y-1}{2}=\frac{y-0,5}{5}\)
\(5y-5=2y-1\Leftrightarrow5y-5-2y+1=0\Leftrightarrow3y-4=0\Leftrightarrow y=\frac{4}{3}\)
Thay y vào biểu thức \(\frac{3y-1}{2}\)ta đc
\(x=\frac{3.\frac{4}{3}-1}{2}=\frac{3}{2}\)
Vậy \(\left\{x;y\right\}=\left\{\frac{3}{2};\frac{4}{3}\right\}\)
b) \(\sqrt{25a^2}+3a\) \(=5\left|a\right|+3a\)
Vì a > 0 => |a| = a
=> 5|a| + 3a = 5a + 3a = 8a
Ta có \(P=\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{8}-2}-\frac{\sqrt{15}-\sqrt{3}}{2-2\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{3}}\)
\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{2\left(1-\sqrt{5}\right)}\right).\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\left(\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2}\right).\left(\sqrt{7}-\sqrt{3}\right)=\frac{\sqrt{7}+\sqrt{3}}{2}.\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\frac{7-3}{2}=2\)
Vậy \(P=2\)
C1 : \(\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{\sqrt{x}+2}{\sqrt{x}+2}+\frac{2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\le2\)
C2 : \(\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{2\sqrt{x}+4-\sqrt{x}}{\sqrt{x}+2}=\frac{2\left(\sqrt{x}+2\right)-\sqrt{x}}{\sqrt{x}+2}=2-\frac{\sqrt{x}}{\sqrt{x}+2}\le2\)
ĐKXĐ: \(x\ge0\)
\(\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\le2\)
Vậy GTLN là 2 khi x = 0.
Câu 6: Để hàm số y=(1-m)x+3 nghịch biến trên R thì 1-m<0
=>m>1
=>Chọn B
Câu 7: D
Câu 10: (D)//(D')
=>\(\left\{{}\begin{matrix}3m+1=2\left(m+1\right)\\-2\ne-2\left(loại\right)\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
=>Chọn D
Câu 11: \(x^2+2x+2=\left(x+1\right)^2+1>=1>0\forall x\)
=>\(\sqrt{x^2+2x+2}\) luôn xác định với mọi số thực x
=>Chọn A
Câu 12: Để hai đường thẳng y=x+3m+2 và y=3x+2m+3 cắt nhau tại một điểm trên trục tung thì \(\left\{{}\begin{matrix}1\ne3\left(đúng\right)\\3m+2=2m+3\end{matrix}\right.\)
=>3m+2=2m+3
=>m=1
=>Chọn C
Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi
\(1,\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)
\(ĐKXĐ:x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)
\(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)
\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}+3\right|=5\)
\(\orbr{\begin{cases}2-\sqrt{x-1}+\sqrt{x-1}+3=5\\\sqrt{x-1}-2+\sqrt{x-1}+3=5\end{cases}\orbr{\begin{cases}5=5\left(TM\forall x\right)\\\sqrt{x-1}=2\end{cases}\orbr{\begin{cases}5=5\\x=5\left(TM\right)\end{cases}}}}\)
vậy pt có nghiệm là \(1\le x\le+\infty\)
\(2,\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\)
\(ĐKXĐ:x\ge\frac{3}{2}\)
\(\sqrt{x+\sqrt{6}\sqrt{x-\frac{3}{2}}}+\sqrt{x-\sqrt{6}\sqrt{x-\frac{3}{2}}}=\sqrt{6}\)
\(\sqrt{x-\frac{3}{2}+\sqrt{6}\sqrt{x-\frac{3}{2}}+\frac{3}{2}}+\sqrt{x-\frac{3}{2}-\sqrt{6}\sqrt{x-\frac{3}{2}}+\frac{3}{2}}=\sqrt{6}\)
\(\sqrt{\left(\sqrt{x-\frac{3}{2}}+\frac{3}{2}\right)^2}+\sqrt{\left(\sqrt{x-\frac{3}{2}}-\frac{3}{2}\right)^2}=\sqrt{6}\)
\(\left|\sqrt{x-\frac{3}{2}}+\frac{3}{2}\right|+\left|\sqrt{x-\frac{3}{2}}-\frac{3}{2}\right|=\sqrt{6}\)
\(\orbr{\begin{cases}\sqrt{x-\frac{3}{2}}+\frac{3}{2}+\frac{3}{2}-\sqrt{x-\frac{3}{2}}=\sqrt{6}\\\sqrt{x-\frac{3}{2}}+\frac{3}{2}-\frac{3}{2}+\sqrt{x-\frac{3}{2}}=\sqrt{6}\end{cases}}\orbr{\begin{cases}3=\sqrt{6}\\2\sqrt{x-\frac{3}{2}}=\sqrt{6}\end{cases}}\)
\(\orbr{\begin{cases}3=\sqrt{6}\left(KTM\right)\\x=3\left(TM\right)\end{cases}}\)
\(3,\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)
\(ĐKXĐ:x\ge3\)
\(\left(\sqrt{x^2-5x+6}-\sqrt{2}\right)+\left(\sqrt{x+1}-\sqrt{5}\right)=\left(\sqrt{x-2}-\sqrt{2}\right)+\left(\sqrt{x^2-2x-3}-\sqrt{5}\right)\)
\(\frac{x^2-5x+4}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x-4}{\sqrt{x+1}+\sqrt{5}}=\frac{x-4}{\sqrt{x-2}+\sqrt{2}}+\frac{x^2-2x-8}{\sqrt{x^2-2x-3}+\sqrt{5}}\)
\(\frac{\left(x-4\right)\left(x-1\right)}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x-4}{\sqrt{x+1}+\sqrt{5}}=\frac{x-4}{\sqrt{x-2}+\sqrt{2}}+\frac{\left(x-4\right)\left(x+2\right)}{\sqrt{x^2-2x-3}+\sqrt{5}}\)
\(\left(x-4\right)\left(\frac{x-1}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{1}{\sqrt{x+1}+\sqrt{5}}-\frac{1}{\sqrt{x-2}+\sqrt{2}}-\frac{x+2}{\sqrt{x^2-2x-3}+\sqrt{5}}\right)=0\)
\(\orbr{\begin{cases}x=4\left(TM\right)\\\frac{x-1}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{1}{\sqrt{x+1}+\sqrt{5}}-\frac{1}{\sqrt{x-2}+\sqrt{2}}-\frac{x+2}{\sqrt{x^2-2x-3}-\sqrt{5}}=0\end{cases}}\)
bạn lập luận cái dưới vô nghiệm
10, \(đk:x\ge\frac{1}{2}\)
\(\sqrt{x+3}+\sqrt{2x-1}=3\)
\(\Leftrightarrow\sqrt{x+3}+\sqrt{2x-1}-3=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x+3}-2\right)\left(\sqrt{x+3}+2\right)}{\sqrt{x+3}+2}+\frac{\left(\sqrt{2x-1}-1\right)\left(\sqrt{2x-1}+1\right)}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\frac{x+3-4}{\sqrt{x+3}+2}+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x+3}+2}+\frac{2x-2}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{x+3}+2}+\frac{2}{\sqrt{2x-1}+1}\right)=0\)
với x >= 1/2 thì ngoặc thứ 2 > 0
\(\Leftrightarrow x=1\left(tm\right)\)
8, đk \(\orbr{\begin{cases}x\ge0\\x\le-8\end{cases}}\)
\(x^2+8x-3=2\sqrt{x\left(x+8\right)}\)
\(\Leftrightarrow x\left(x+8\right)-3=2\sqrt{x\left(x+8\right)}\)
đặt \(\sqrt{x\left(x+8\right)}=a\left(a\ge0\right)\)
pt trở thành : \(a^2-3=2a\Leftrightarrow a^2-2a-3=0\)
\(\Leftrightarrow\left(a-3\right)\left(a+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-1\left(loai\right)\end{cases}}\)
a = 3 => \(\sqrt{x\left(x+8\right)}=3\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-9\left(tm\right)\end{cases}}\)
7, đk \(x>0\)
\(\sqrt{\frac{x^2+x+1}{x}}+\sqrt{\frac{x}{x^2+x+1}}=\frac{7}{4}\)
\(\Leftrightarrow\frac{x^2+x+1}{x}+\frac{x}{x^2+x+1}+2\sqrt{\frac{x^2+x+1}{x}\cdot\frac{x}{x^2+x+1}}=\frac{49}{16}\)
\(\Leftrightarrow\frac{x^4+x^2+1+2x^3+2x^2+2x+x^2}{x\left(x^2+x+1\right)}+2=\frac{49}{16}\)
\(\Leftrightarrow\frac{x^4+2x^3+4x^2+2x+1}{x\left(x^2+x+1\right)}=\frac{17}{16}\)
\(\Leftrightarrow16x^4+32x^3+64x^2+32x+16=17x^3+17x^2+17x\)
\(\Leftrightarrow16x^4+15x^3+47x^2+15x+16=0\)
bấm mt nó ra nghiệm ảo :v