Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Việt Lâm, Uyen Vuuyen, Trần Trung Nguyên, Akai Haruma, JakiNatsumi, bullet sivel, Vương Đại Nguyên, Đời về cơ bản là buồn... cười!!!, Tạ Thị Diễm Quỳnh, @Nk>↑@, Ribi Nkok Ngok, DƯƠNG PHAN KHÁNH DƯƠNG, Bonking, Thiên Hàn, TRẦN MINH HOÀNG, Mysterious Person, Aki Tsuki, Khánh Như Trương Ngọc, Phùng Khánh Linh, ...
Bạn tự vẽ hình nhé!
+) Chứng minh : tam giác ADB đồng dạng với tam giác ABF (g - g)
- Nối O với F. Kẻ OH | BF.
Tam giác OBF cân tại O có OH là đường cao nên đồng thời là đường phân giác => góc BOH = góc BOF/2
Mặt khác, góc BOH = ABF (cùng phụ với góc OBF)
=> góc ABF = góc BOF/2 (*)
- Ta có: góc BDO + DBO = BOC (tính chất góc ngoài tam giác) => 2.BDO = BOC => góc BDO = góc BOC/2
Lại có: góc FDO + DFO = FOC (t/c góc ngoài tam giác) => 2.góc FDO = FOC => góc FDO = góc FOC/ 2
=> góc BDO - FDO = góc BOC /2 - góc FOC/2 = góc BOF/2
=> góc BDF = góc BOF/2 (**)
Từ (*)(**) => góc ABF = BDF mà góc FAB chung
=> Tam giác ADB đồng dạng với ABF (g- g) => \(\frac{AD}{AB}=\frac{AB}{AF}\) => AD.AF = AB2
+ Theo ý a => AI.AO = AD.AF => \(\frac{AI}{AD}=\frac{AF}{AO}\) Lại có góc OAD chung
=> Tam giác AFI đồng dạng với tam giác AOD (c - g- c)
=> góc AIF = ADO ( 2 góc tương ứng)
câu trả lời của tớ là :
học lớp 9 rồi ko biết
thôi đc rồi tk tôi tôi làm cho
Xin lỗi nha, mình ko biết vẽ hình trên máy nên bạn tự vẽ hình giùm mình nha
b)Ta có:\(\widehat{MNB}=\dfrac{1}{2}\stackrel\frown{BM}\left(1\right)\)( góc nội tiếp chắn cung BM)
\(\widehat{AEB}=\dfrac{1}{2}\left(\stackrel\frown{AB-\stackrel\frown{AM}}\right)\)= \(\dfrac{1}{2}\stackrel\frown{BM}\)(2) (Góc có đỉnh ngoài đường tròn)
Từ (1) và (2) ⇒ \(\widehat{MNB}=\widehat{AEB}\)
Xét Δ BMN và Δ BFE có:
\(\widehat{B}\): góc chung
\(\widehat{MNB}=\widehat{AEB}\) ( cùng chắn \(\stackrel\frown{BM}\) )
Do đó: Δ BMN \(\sim\) Δ BFE(g-g)
⇔ BM . BE =BN . BF (đpcm)
vẽ giùm cái hình đi, lười vẽ hình trên này quá