Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+....+\frac{1}{47.48.49.50}\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{47.48.49}-\frac{1}{48.49.50}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{48.49.50}\right)\)
\(=\frac{1}{3}.\frac{6533}{39200}=\frac{6533}{117600}\)
xét \(VT=\frac{2}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+......+\frac{1}{2n.\left(2n+2\right)}\right)\) (1)
\(=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+.......+\frac{2}{2n\left(2n+2\right)}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.......+\frac{1}{2n}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{1}{4}-\frac{1}{2\left(2n+2\right)}\)
\(=\frac{1}{4}-\frac{1}{4n+4}\)
mà theo bài ra (1) = \(\frac{502}{2009}\)
<=>\(\frac{1}{4}-\frac{1}{4n+4}=\frac{502}{2009}\)
<=>\(\frac{1}{4n+4}=\frac{1}{4}-\frac{502}{2009}\)
<=>\(\frac{1}{4n+4}=\frac{1}{8036}\)
<=> 4n+4=8036
<=> 4n=8032
<=> n=2008
=) \(\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2n\left(2n+2\right)}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}-\frac{1}{2n+2}=\frac{502}{2009}:\frac{1}{2}=\frac{1018}{2009}\)
=) \(\frac{1}{2n+2}=\frac{1}{2}-\frac{1018}{2009}=\frac{-27}{4018}\)
=) \(\frac{-1}{-\left(2n+2\right)}=\frac{-27}{4018}\)
=) \(\frac{-27}{27.-\left(2n+2\right)}=\frac{-27}{4018}\)
=) \(27.-\left(2n+2\right)=4018\)
=) \(-\left(2n+2\right)=4018:27=\frac{4018}{27}\)
=) \(2n+2=\frac{-4018}{27}\)
=) \(2n=\frac{-4018}{27}-2=\frac{-4072}{27}\)
=) \(n=\frac{-4072}{27}:2=\frac{-2036}{27}\)
\(\)
xem lại đề: không thấy quy luật của tử:
nội suy: Tử là tích=[(2n+2)(2n+5)+2] với n={1...49}
Tuy nhiên mình không thích sửa đề, đề thế nào làm vậy.%
a: \(\Leftrightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{9}-\dfrac{1}{10}\right)\cdot\left(x-1\right)+\dfrac{1}{10}x-x=-\dfrac{9}{10}\)
\(\Leftrightarrow\dfrac{9}{10}x-\dfrac{9}{10}-\dfrac{9}{10}x=-\dfrac{9}{10}\)
=>-9/10=-9/10(luôn đúng)
b: \(\Leftrightarrow\dfrac{195x+195+130x+195+117x+195+100x+195}{195}=\dfrac{22\cdot39+4\cdot65+6\cdot39+40\cdot5}{195}\)
=>347x+780=1552
=>347x=772
hay x=772/347
Đặt A=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
=>2A=\(\dfrac{2}{1.2.3}\)+\(\dfrac{2}{2.3.4}\)+...+\(\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
=\(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\)\(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
=\(\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
=\(\dfrac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}\)
=\(\dfrac{n^2+3n}{2\left(n^2+3n+2\right)}\)
=>A=\(\dfrac{n^2+3n}{4n^2+12n+8}\)
Ta có:
\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(\Rightarrow\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2005.2006.2007}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2006.2007}\right)=\frac{1}{2}\left(\frac{2005.2008}{2.2006.2007}\right)\)
Đặt \(A=1.2+2.3+...+n\left(n+1\right)\)
\(\Rightarrow3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+n\left(n+1\right)\left(n+2-\left(n-1\right)\right)\)
\(\Rightarrow3A=1.2.3-1.2.0+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow3A=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(\Rightarrow1.2+2.3+...+2006.2007=\frac{2006.2007.2008}{2}\)
Vậy pt trở thành:
\(\frac{1}{2}\left(\frac{2005.2008}{2.2006.2007}\right)x=\frac{2006.2007.2008}{2}\)
\(\Leftrightarrow\frac{2005}{2.2006.2007}x=2006.2007\)
\(\Rightarrow x=\frac{2.\left(2006.2007\right)^2}{2005}\)
\(S=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)
\(4S=1.2.3.4+2.3.4.4+...+n\left(n+1\right)\left(n+2\right).4\)
\(4S=1.2.3.4+2.3.4.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\)
\(\left[\left(n+3\right)-\left(n-1\right)\right]\)
\(4S=1.2.3.4+2.3.4.5-1.2.3.4+...+\)
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(4S=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(4S+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt \(n^2+3n=t\)
\(Đt=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2\)(là số chính phương)