K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

a)    x3-x2-21x+45=0

<=> x3+5x2-6x2-30x+9x+45=0

<=> (x+5)(x2-6x+9)=0

<=> (x+5)(x2-3x-3x+9)=0

<=> (x+5)(x-3)2=0

 Vậy S={-5;3}

b)    X3+3X2+4X+2=0

<=>  X3+X2+2X2+2X+2X+2=0

<=> (X+1)(X2+2X+2)=0

VÌ  X2+2X+2 >=0

NÊN S={-1}

C)    X4+7X-8=0

<=> X4-X3+X3-X2+X2-X+8X-8=0

<=> (X-1)(X3+X2+X+8)=0

VÌ X3+X2+X+8>=0

NÊN S={1}

D)     6X4-X3-7X2+X+1=0

<=>  6X4-6X3+5X3-5X2-2X2+2X-X+1=0

<=>  (X-1)(6X3+5X2-2X-1)=0

<=> (X-1)(6X3-3X2+8X2-4X+2X-1)=0

<=> (X-1)(2X-1)(3X2_4X+1)=0

<=>  (X-1)(2X-1)(3X2-3x-x+1)=0

<=> (X-1)2(2X-1)(3x-1)=0

vậy S={1/3;1/2;1}

11 tháng 2 2018

a, (3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy...

27 tháng 5 2018

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

3 tháng 10 2019

a) (x + 3)2 - (x - 2)2 = 2x

=> (x + 3 - x + 2)(x + 3 + x - 2) = 2x

=> 5(2x + 1) = 2x

=> 10x + 5 = 2x

=> 10x - 2x = -5

=> 8x = -5

=> x = -5/8

b) 7x(x - 2) = x - 2

=> 7x(x - 2) - (x - 2) = 0

=> (7x - 1)(x - 2) = 0

=> \(\orbr{\begin{cases}7x-1=0\\x-2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{1}{7}\\x=2\end{cases}}\)

c) 8x3 - 12x2 + 6x - 1 = 0

=> (2x - 1)3 = 0

=> 2x - 1 = 0

=> 2x = 1

=> x = 1/2

16 tháng 9 2020

b) \(x^3-6x^2+9x=0\)

\(\Leftrightarrow x.\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow x.\left(x-3\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy \(x=0\)hoặc \(x=3\)

16 tháng 9 2020

a. ( x - 1 )3 + 1 + 3x ( x - 4 ) = 0

<=> x3 - 3x2 + 3x - 1 + 1 + 3x2 - 12x = 0

<=> x3 - 9x = 0

<=> x ( x2 - 9 ) = 0

<=> \(\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)

b. x3 - 6x2 + 9x = 0

<=> x ( x2 - 6x + 9 ) = 0

<=> x ( x - 3 )2 = 0

<=> \(\orbr{\begin{cases}x=0\\\left(x-3\right)^2=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

27 tháng 9 2021

cảm ơn xong chẳng có ai :)))

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha 

11 tháng 2 2020

a)  \(4\left(2x+7\right)^2=9\left(x+3\right)^2\)

\(\Leftrightarrow4\left(4x^2+28x+49\right)=9\left(x^2+6x+9\right)\)

\(\Leftrightarrow16x^2+112x+196=9x^2+54x+81\)

\(\Leftrightarrow7x^2+58x+115=0\)

\(\Leftrightarrow7x^2+35x+23x+115=0\)

\(\Leftrightarrow7x\left(x+5\right)+23\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\7x+23=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-\frac{23}{7}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-5;-\frac{23}{7}\right\}\)

b) \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+4x+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[2x\left(x+2\right)+\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc \(2x+1=0\)

hoặc  \(x+2=0\)

\(\Leftrightarrow\) \(x=-1\)

hoặc    \(x=-\frac{1}{2}\)

hoặc    \(x=-2\)

 Vậy tập nghiệm của phương trình là \(S=\left\{-1;-\frac{1}{2};-2\right\}\)

11 tháng 2 2020

c) \(x^4+x^2+6x-8=0\)

\(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)

\(\Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)+2x\left(x-1\right)+8\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2-x^2-2x+4x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)+4\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)

\(\Leftrightarrow\)\(x-1=0\)

hoặc   \(x+2=0\)

hoặc   \(x^2-x+4=0\)

\(\Leftrightarrow\)\(x=1\)(tm)

hoặc   \(x=-2\)(tm)

hoặc  \(\left(x-\frac{1}{2}\right)^2+\frac{15}{4}=0\)(ktm)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-2\right\}\)

d) \(\left(x-1\right)^3+\left(2x+3\right)^3=27x^3+8\)

\(\Leftrightarrow x^3-3x^2+3x-1+8x^3+36x^2+54x+27=27x^3+8\)

\(\Leftrightarrow9x^3+33x^2+57x+26=27x^3+8\)

\(\Leftrightarrow18x^3-33x^2-57x-18=0\)

\(\Leftrightarrow18x^3-54x^2+21x^2-63x+6x-18=0\)

\(\Leftrightarrow18x^2\left(x-3\right)+21x\left(x-3\right)+6\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(18x^2+21x+6\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(18x^2+9x+12x+6\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[9x\left(2x+1\right)+6\left(2x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)\left(9x+6\right)=0\)

\(\Leftrightarrow\)\(x-3=0\)

hoặc  \(2x+1=0\)

hoặc  \(9x+6=0\)

\(\Leftrightarrow\)\(x=3\)

hoặc  \(x=-\frac{1}{2}\)

hoặc \(x=-\frac{2}{3}\)

Vậy tập nghiệm của phương trình là \(S=\left\{3;-\frac{1}{2};-\frac{2}{3}\right\}\)

29 tháng 8 2018

1)\(21x^2y-12xy^2=xy.\left(21x-12y\right)\)

2)\(x^3+x^2-2x=x.\left(x^2+x-2\right)\)

3)\(3x.\left(x-1\right)+7x^2\left(x-1\right)=\left(x-1\right).\left(3x+7x^2\right)=x.\left(x-1\right)\left(3+7x\right)\)

15)\(\left(2a+3\right)^2-\left(2a+1\right)^2=\left(2a+3-2a-1\right)\left(2a+3+2a+1\right)=2.\left(4a+4\right)=8\left(a+1\right)\)

14) \(-4y^2+4y-1=-\left[\left(2y\right)^2-2.2y.1+1^2\right]=-\left(2y-1\right)^2\)

13) \(x^6+1=\left(x^2\right)^3+1=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

12) \(\left(x+1\right)^2-\left(y+6\right)^2=\left(x+1-y-6\right)\left(x+1+y+6\right)=\left(x-y-5\right)\left(x+y+7\right)\)

4) \(3x\left(x-a\right)+4a\left(a-x\right)=3x.\left(x-a\right)-4a\left(x-a\right)=\left(x-a\right)\left(3x-4a\right)\)

Sao nhiều thế!

29 tháng 8 2018

Đúng là nhiều thật , dù sao cx cảm ơn bn nhìn nha!!!