K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2023

bài bạn đâu z

23 tháng 8 2023

ụaaa

 

6 tháng 8 2021

b) `sin^2 3x=1`

`<=> (1-cos6x)/2=1`

`<=> 1-cos6x=2`

`<=> cos6x=-1`

`<=> 6x=π +k2π`

`<=>x=π/6 +k π/3 ( k \in ZZ)`

c) `tan^2 2x=3`

`<=> (1-cos4x)/(1+cos4x)=3`

`<=> 1-cos4x=3+3cos4x`

`<=>cos4x = -1/2`

`<=>4x= \pm (2π)/3 +k2π`

`<=>x =  \pm π/6 + k π/2 (k \in ZZ)`

Giải thích các bước giải:

 sin 2x=cos xsin 2x=cos x

⇔sin 2x=sin (π2−x)⇔sin 2x=sin (π2-x)

⇔⇔ ⎡⎢⎣2x=π2−x+k2π (k∈Z)2x=π−π2+x+k2π (k∈Z)[2x=π2−x+k2π (k∈Z)2x=π−π2+x+k2π (k∈Z) 

⇔⇔ ⎡⎢⎣3x=π2+k2π (k∈Z)x=π2+k2π (k∈Z)[3x=π2+k2π (k∈Z)x=π2+k2π (k∈Z) 

⇔⇔ ⎡⎢ ⎢⎣x=π6+k2π3 (k∈Z)x=π2+k2π (k∈Z)[x=π6+k2π3 (k∈Z)x=π2+k2π (k∈Z) 

Vậy S={π6+k2π3 (k∈Z),π2+k2π (k∈Z)

NV
15 tháng 3 2022

3.

\(u_2=\dfrac{1}{2-u_1}=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3}\)

\(u_3=\dfrac{1}{2-u_2}=\dfrac{1}{2-\dfrac{2}{3}}=\dfrac{3}{4}\)

\(u_4=\dfrac{1}{2-\dfrac{3}{4}}=\dfrac{4}{5}\)

4.

\(u_1=\dfrac{2^{1+1}+1}{2^1}=\dfrac{5}{2}\)

\(u_3=\dfrac{2^4+1}{2^3}=\dfrac{17}{8}\)

\(u_5=\dfrac{2^6+1}{2^5}=\dfrac{65}{32}\)

5. Đề bị khuất

15 tháng 3 2022

undefined

21 tháng 3 2022

1. \(limu_n=-8\)

2. \(lim(-n+6)=\)\(-\infty\)

3. \(lim\left(u_n.v_n\right)=8.\dfrac{7}{2}=4.7=28\)

4. \(lim\dfrac{6n}{n+5}=lim\dfrac{6}{1+\dfrac{5}{n}}=6\)

5. \(lim\left(\dfrac{2}{9}\right)^n=\dfrac{2^n}{9^n}=\dfrac{\left(\dfrac{2}{9}\right)^n}{\left(\dfrac{9}{9}\right)^n}=0\)

21 tháng 3 2022

èo đỉnhhhh

NV
22 tháng 10 2021

5.

ĐKXĐ: \(x\ne\dfrac{\pi}{2}+k\pi\)

\(\left(1-\dfrac{sinx}{cosx}\right)\left(sin^2x+cos^2x+2sinx.cosx\right)=1+\dfrac{sinx}{cosx}\)

\(\Leftrightarrow\dfrac{\left(cosx-sinx\right)}{cosx}\left(sinx+cosx\right)^2=\dfrac{sinx+cosx}{cosx}\)

\(\Leftrightarrow\dfrac{\left(sinx+cosx\right)\left(cos^2x-sin^2x\right)}{cosx}=\dfrac{sinx+cosx}{cosx}\)

\(\Leftrightarrow\dfrac{cos2x\left(sinx+cosx\right)}{cosx}-\dfrac{sinx+cosx}{cosx}=0\)

\(\Leftrightarrow\dfrac{sinx+cosx}{cosx}\left(cos2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\\cos2x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=k\pi\end{matrix}\right.\)

NV
22 tháng 10 2021

6.

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos6x-\left(\dfrac{1}{2}+\dfrac{1}{2}cos8x\right)=\dfrac{1}{2}-\dfrac{1}{2}cos10x-\left(\dfrac{1}{2}+\dfrac{1}{2}cos12x\right)\)

\(\Leftrightarrow cos6x-cos10x+cos8x-cos12x=0\)

\(\Leftrightarrow2sin2x.sin8x+2sin2x.sin10x=0\)

\(\Leftrightarrow sin2x\left(sin8x+sin10x\right)=0\)

\(\Leftrightarrow2sin2x.sin9x.cosx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sin9x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\dfrac{k\pi}{9}\end{matrix}\right.\)

NV
17 tháng 1 2022

Đề bài lỗi rồi em

9 tháng 4 2022

a. Ta có : \(SA\perp\left(ABCD\right)\Rightarrow BC\perp SA\)

Đáy ABCD là HV \(\Rightarrow BC\perp AB\) 

Suy ra : \(BC\perp\left(SAB\right)\Rightarrow\left(SAB\right)\perp\left(SBC\right)\)  ( đpcm ) 

b. \(\left(SBD\right)\cap\left(ABCD\right)=BD\)

O = \(AC\cap BD\)  ; ta có : \(AO\perp BD;AO=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{2}a\)

Dễ dàng c/m : \(BD\perp\left(SAC\right)\)  \(\Rightarrow SO\perp BD\)

Suy ra : \(\left(\left(SBD\right);\left(ABCD\right)\right)=\left(SO;AO\right)=\widehat{SOA}\)

\(\Delta SAO\perp\) tại A có : tan \(\widehat{SOA}=\dfrac{SA}{AO}=\dfrac{a}{\dfrac{\sqrt{2}}{2}a}=\sqrt{2}\)

\(\Rightarrow\widehat{SOA}\approx54,7^o\) \(\Rightarrow\) ...