Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=3^4.\left(3^3\right)^4+3^2.\left(3^4\right)^3=3^{16}+3^2.\left(3^4\right)^3=\left(3^4\right)^4+3^2.\left(3^4\right)^3\)
\(3^4\) có tận cùng là 1 \(\Rightarrow\left(3^4\right)^4\) có tận cùng là 1
\(3^4\)có tận cùng là 1 \(\Rightarrow\left(3^4\right)^3\) có tận cùng là 1 \(\Rightarrow3^2.\left(3^4\right)^3\) có tận cùng là 9
=> Biểu thức có tận cùng là 0
Chỗ chấm là 3 nhé
Mình đổi chỗ chấm thành x nha
\(\left(\frac{1}{x}\right)^5=\frac{3}{96}\)
\(\Rightarrow\frac{1}{x^5}=\frac{1}{32}\)\(\Rightarrow x^5=32\Rightarrow x^5=3^5\Rightarrow x=3\)
Có: \(a^2+b+2=2ab\)
\(\Leftrightarrow a^2+2=b\left(2a-1\right)\)
\(\Leftrightarrow b=\frac{a^2+2}{2a-1}\in Z\)
khi và chỉ khi \(a^2+2⋮2a-1\)
\(\Leftrightarrow2\left(a^2+2\right)-a\left(2a-1\right)⋮2a-1\)
\(\Leftrightarrow a+4⋮2a-1\)
\(\Leftrightarrow2\left(a+4\right)-\left(2a-1\right)⋮2a-1\)
\(\Leftrightarrow9⋮2a-1\)
\(\Leftrightarrow2a-1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Rồi giải a..........
Rồi giải b...........
Bước tiếp theo bn giải nha
Đặt vế trái phương trình là A
\(3A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}\)
\(3A=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+\frac{\left(x+3\right)-x}{x\left(x+3\right)}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\)
\(3A=1-\frac{1}{x+3}=\frac{x+2}{x+3}\Rightarrow A=\frac{x+2}{3\left(x+3\right)}\)
\(\Rightarrow\frac{x+2}{3\left(x+3\right)}=\frac{667}{2002}\Rightarrow2002\left(x+2\right)=3.667.\left(x+3\right)\)
\(\Leftrightarrow2002x+4004=2001x+6003\Leftrightarrow x=1999\)
tham khảo
?????????