K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

nhận thấy x = 0 không là nghiệm của phương trình

Chia 2 vế phương trình cho x2, ta được : 

\(x^2-9x+24-\frac{27}{x}+\frac{9}{x^2}=0\)  ( 1 )

đặt \(t=x+\frac{3}{x}\)

( 1 ) \(\Leftrightarrow\left(x+\frac{3}{x}\right)^2-9\left(x+\frac{3}{x}\right)+18=0\)

\(\Leftrightarrow t^2-9t+18=0\Leftrightarrow\left(t-6\right)\left(t-3\right)=0\Leftrightarrow\orbr{\begin{cases}t=6\\t=3\end{cases}}\)

Khi đó : \(\orbr{\begin{cases}x+\frac{3}{x}=6\Leftrightarrow x=3\pm\sqrt{6}\\x+\frac{3}{x}=3\Leftrightarrow x\in\varnothing\end{cases}}\)

1 tháng 3 2020

Hệ phương trình

\(\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^3=0\\\left(y-3\right)^3=0\\\left(z-3\right)^3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\\z=3\end{cases}}}\)

1 tháng 3 2020

\(hpt=>\hept{\begin{cases}x^3+y^3-9y^2+27y-27=y^3.\\y^3+z^3-9z^2-27x-27=z^3.\\z^3+x^3-9y^2-27y-27=x^3.\end{cases}}\)

\(=>\hept{\begin{cases}x^3=y^3-\left(y-3\right)^3\\y^3=z^3-\left(z-3\right)^3\\z^3=x^3-\left(x-3\right)^3\end{cases}}\)

Do vai trong của x, y , z như nhau nên ta giả sử x=max{x,y,z}

Do giả sử ta có 

\(=>\hept{\begin{cases}x^3\ge z^3\\-\left(y-3\right)^3\ge\left(x-y\right)^3\end{cases}}\)

=>\(\hept{\begin{cases}y^3-\left(y-3\right)^3\ge x^3-\left(x-3\right)^3\\-\left(y-3\right)^3\ge-\left(x-3\right)^3\end{cases}}\)

=>\(y^3\ge x^3=>y\ge x\)

Từ đây , ta suy ra x=y=z

Thay zô 1 pt bất kì tao tìm được x=y=z=3

Vậy nghiệm duy nhất của hệ phương trình là x=y=z=3

bài 1

\(\frac{x-1}{x+3}>0\)   \(\left(x\ne-3\right)\)

   TH1  \(\hept{\begin{cases}x-1>0\\x+3< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>1\\x< -3\end{cases}}\)(vô lí)

      TH2 \(\hept{\begin{cases}x-1< 0\\x+3>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< 1\\x>-3\end{cases}}\)\(\Rightarrow-3< x< 1\)

bài 2 . với dạng này ta áp dụng bđt \(|x|< A\Leftrightarrow\orbr{\begin{cases}x< -A\\x>A\end{cases}}\)

|x - 5| >2

\(\Leftrightarrow\orbr{\begin{cases}x-5>2\\x-5< -2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x>7\\x< 3\end{cases}}\)

#mã mã#

22 tháng 9 2018

\(\sqrt{9x^2-6x+5}=1-x^2\)

\(\Leftrightarrow9x^2-6x+5=\left(1-x^2\right)^2\)

\(\Leftrightarrow9x^2-6x+5=1-2x^2+x^4\)

\(\Leftrightarrow9x^2-6x+5-1+2x^2-x^4=0\)

\(\Leftrightarrow-x^4+11x^2-6x+4=0\)

\(\Leftrightarrow x^4-11x^2+6x-4=0\)

22 tháng 9 2018

<=>\(\sqrt{9x^2-6x+5}=1-x^2\)

<=>\(\sqrt{\left(9x^2-6x+1\right)+4}=1-x^2\)

<=>\(\sqrt{\left(3x-1\right)^2+4}=1-x^2\)

<=> 3x - 1 + 2 = 1 - x2

<=> 3x + x2 = 1 +1 - 2

<=> x(3+x) = 0

<=> x = o hoặc 3+x =0 <=> x = -3

Vậy S= {0;-3}

28 tháng 1 2016

\(hpt\Leftrightarrow\int^{x^3=9y^2-27y+27\left(1\right)}_{\int^{y^3=9z^2-27z+27}_{z^3=9x^2-27x+27}}\)

Vì vai trò x ; y; z bình đẳng trong hệ ta g/s \(x\le y\le z\) (I)

Với  \(x\le y\Rightarrow9x^2-27x+27\le9y^2-27y+27\Leftrightarrow z^3\le x^3\Leftrightarrow z\le x\) ( II )

\(x\le z\Rightarrow9x^2-27x+27\le9z^2-27z+27\Leftrightarrow z^3\le y^3\Leftrightarrow z\le y\) ( III )

Từ (I) ; ( II ) ; (III ) => x = y =z 

Thay x = y vào pt (1) giải ra nghiệm 

30 tháng 1 2016

bài này mình cộng 3 hệ lại cuối cùng được ntn:

\(\left(x-3\right)^3+\left(y-3\right)^3+\left(z-3\right)^3=0\) 

đến đây chả biết làm tn :3 ko nhớ HĐT \(A^3+B^3+C^3\) bằng gì nữa @@

8 tháng 10 2019

\(x^4-9x^3+24x^2-27x+9=0\)

<=> \(x^4-3x^3+3x^2-6x^3+18x^2-18x+3x^2-9x+9=0\)

<=>\(x^2\left(x^2-3x+3\right)-6x\left(x^2-3x+3\right)+3\left(x^2-3x+3\right)=0\)

<=>\(\left(x^2-6x+3\right)\left(x^2-3x+3\right)=0\)

<=> \(\left[{}\begin{matrix}x^2-6x+3=0\\x^2-3x+3=0\end{matrix}\right.\)

Giải nốt :))