K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Giải

a) Ta có :

1 + 2 + 22 + ... + 27

= (1 + 2) + 22 .(1 + 2) + ... + 26 . (1 + 2)

= 3 + 22 . 3 + ... 26 . 3 \(⋮\)3

9 tháng 11 2017

cau b nua ban

neu giai duoc thi giai con khong thi minh tu giai cung duoc

22 tháng 2 2017

a) 2n + 1 \(⋮\)n - 5

=> 2.( n - 5 ) + 1 + 10   \(⋮\)n - 5

=> 2.( n - 5 ) + 11  \(⋮\)n - 5

=> 11  \(⋮\)n - 5 [ vì 2.( n - 5 )  \(⋮\)n - 5 ]

=> n - 5 \(\in\)Ư(11) = { -11 ;- 1;1 ; 11 }

=> n \(\in\){ -6; 4;6;16 } 

Vậy: n \(\in\){ -6; 4;6;16 } 

b) n2 + 3n - 13 \(⋮\)n + 3 

=> n.n + 3n - 13  \(⋮\)n + 3 

=> n.( n+ 3 ) + 3 . ( n + 3 ) - 13 - 3n - 9  \(⋮\)n + 3 

=> 13 - 3n - 9  \(⋮\)n + 3  [ vì  n.( n + 3 ) và 3.( n + 3 )  \(⋮\)n + 3  ] 

=> 3n - 22  \(⋮\)n + 3 

=>3.( n - 3 ) - 22 - 9  \(⋮\)n + 3 

=> 3.( n - 3 ) - 31    \(⋮\)n + 3 

=> 31  \(⋮\)n + 3  [ vì 3. ( n - 3 )  \(⋮\)n + 3  ]

=> n + 3 \(\in\)Ư ( 31 ) = { -31 ; -1 ; 1 ; 31 }

=> n \(\in\){ -34 ; -4; -2 ; 28 } 

Vậy:  n \(\in\){ -34 ; -4; -2 ; 28 } 

c) n+ 3 \(⋮\) n - 1 

=> n.n + 3  \(⋮\) n - 1 

=> n.( n - 1 ) + 3 - n  \(⋮\) n - 1 

=> 3 - n  \(⋮\) n - 1  [  vì n.( n - 1 )  \(⋮\) n - 1  ]

=>  n - 3  \(⋮\) n - 1 

=> ( n - 1 ) - 2  \(⋮\) n - 1 

=> n - 1 \(\in\)Ư( 2 )= { -2 ; - 1; 1 ; 2 }

=> n  \(\in\){ -1 ; 0 ;2 ;3 }

 vậy:  n  \(\in\){ -1 ; 0 ;2 ;3 }

1 tháng 2 2017

a.n + 7 chia hết cho n+2

=> n + 2 + 5 chia hết cho n+2

=> 5 chia hết cho n+2

=> n + 2 thuộc tập hợp các số : 5;-5;1;-1

=> n thuộc tập hợp các số : 3;-7;-1;-3

b.9-n chia hết cho n-3

=> 6 - n - 3 chia hết cho n-3

=> 6 chia hết cho n-3

=> n -3 thuộc tập hợp các số : 1;-1;6;-6

=> n thuộc tập hợp các sô : 4;2;9;-3

Giải hết ra dài lắm

k mk nha

15 tháng 1 2016

KHO NEN MOI HOI NE BAN

8 tháng 11 2017

4 + 4^3 + 4^5 + 4^7 + ... + 4^23

= ( 4 + 4^3 ) + ( 4^5 + 4^7 ) +.....+ ( 4^22 + 4^23)

=4( 1+16 ) + 4^5( 1+16 ) +....+ 4^22( 1+ 16 )

=4 x 17 + 4^5 x 17+....+ 4^22 x 17 chia hết cho 68

Câu 2:

1+3+3^2+3^3+....+3^2000

=( 1+3 +3^2 ) + ( 3^3 + 3^4 + 3^5 ) +.....+ ( 3^ 1998 + 3^1999 + 3^2000)

=1( 1+ 3 + 9 ) + 3^3 + ( 1+ 3 + 9 ) +......+ 3^1998+( 1+ 3 + 9 )

= 1 x 13+ 3^3 x 13 +......+ 3^1998 x 13 chia hết cho 13

k mk nha lần sau mk k lại

8 tháng 11 2017

Câu 1 nha : 4+4^3+4^5+4^7+....+4^23 = (4+4^3)+(4^5+4^7)+....+(4^21+4^23)

= 68 + 4^4.(4+4^3)+....+4^20.(4+4^3) = 68 + 4^4.68 + .... + 4^20.68

=68.(1+4^4+....+4^20) chia hết cho 68

Câu 2 nha 1+3+3^2+...+3^2000 = (1+3+3^2)+(3^3+3^4+3^5)+....+(3^1998+3^1999+3^2000)

= 13 + 3^3.(1+3+3^2)+....+3^1998.(1+3+3^2) = 13+3^3.13+....+3^1998.13

=13.(1+3^3+....+3^1998) chia hết cho 13

20 tháng 10 2016

a,Nếu n = 3k thì n² + 1 = (3k)² + 1 = 9k² + 1 chia 3 dư 1 
Nếu n = 3k + 1 thì n² + 1 = (3k + 1)² + 1 = 9k² + 6k + 2 chia 3 dư 2 
Nếu n = 3k + 2 thì n² + 1 = (3k + 2)² + 1 = 9k² + 12k + 5 chia 3 dư 2 
Vậy vớj mọj n thuộc Z, n^2 + 1 không chia hết cho 3

b,chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng) 
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27. 
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27. 
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1 
= (10^k+18k-1)+9*10^k+18 
= (10^k+18k-1)+9(10^k+2) 
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27. 

Chứng minh 9(10^k+2) chia hết cho 27. 
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng) 
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27. 
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27. 
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2) 
= 9(10^m+2) +81*10^m 
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27 
=>9(10^k+2) chia hết cho 27 
=>10^(k+1)+18(k+1)-1 chia hết cho 27 
=>10^n+18n-1 chia hết cho 27=> đpcm

K MINH NHA!...............

10 tháng 5 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18 tháng 10 2016

a,b cậu tự làm nha !

c) 6n + 30 chia hết cho n + 1

6n + 6 + 24 chia hết cho n + 1

6(n + 1) + 24 chia hết cho n + 1

=> 24 chia hết cho n + 1

=> n + 1 thuộc Ư(24) = {1; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24}

Xét 4 trường hopjc rồi tìm n nha 

d) giống c 

g) n2+ n + 5 chia hết cho n - 1

n2 - n + 2n + 5 chia hết cho n -1

n(n - 1) + 2n + 5 chia hết cho n - 1

=> 2n + 5 chia hết cho n - 1

=> 2n - 2 + 7 chia hết cho n -1 

=> 2(n - 1) + 7 chia hết cho n - 1

=> 7 chia hết cho n - 1

=> n - 1 thuộc Ư(7) = {1 ; 7}

còn lại giống bài c 

h) n2 + 10 chia hết cho n + 1

n2 + n - n + 10 chia hết cho n + 1

n(n + 1) - n + 10 chia hết cho n +1 

=> (-n) + 10 chai hết cho n + 1

=> (-n) - 1 + 11 chia hết cho n + 1

=> -(n + 1) + 11 chia hết cho n + 1

=> -11 chia hết cho n + 1

=> n + 1 thuộc Ư(-11) = {1 ; -1 ; 11 ; -11}

Còn lại giống bài c 

18 tháng 10 2016

Cậu áp dụng công thức này nè : 

a chia hết cho m

b chia hết cho m 

=> a + b hoặc a - b chia hết cho m 

Và a chia hết cho m 

=> a.n chia hết cho m 

Nha!